宽带中红外(IR)超脑激光源对于分子指纹区域的光谱学至关重要。在这里,我们报告了AS 2 S 3-Silica Nansospike Hybrid Waveguides的产生,并在2 s-Silica Nansospike Hybrid波动中产生,由定制的2.8μm飞秒纤维激光器泵送。波导是由压力辅助熔融AS 2 s 3的压力融化到二氧化硅毛细管中形成的,从而可以精确地定制分散体和非线性。连续的相干光谱从1.1μm到4.8μm(30 dB水平)时,在设计波导时会观察到2.8μm在异常的分散体状态中。首次制造和研究了线性锥形的毫米尺度为2 s-3-silica波导,据我们所知,与均匀的波导相比,具有重新的规格相干性,表现出比均匀的波导更宽。由于熔融二氧化硅鞘屏蔽了AS 2 S 3,因此波导被证明是长期的稳定和防水。他们提供了产生宽带MID-IR超孔的替代途径,并在频率计量学和分子光谱中应用,尤其是在潮湿和水性环境中。©2021中国激光出版社
本文的目的是构建一个连续模型,该模型描述了Z D中定向聚合物的缩放限制,其环境具有无限的第二刻:连续体在时空l'evy噪声中定向聚合物。我们的构造可以被认为是与高斯白噪声尺寸1中[2]中[2]中呈现的任意噪声和维度的扩展。在伴侣论文[8]中,我们证明,Z D中有针对性环境的定向聚合物的缩放极限确实是本文中构建的连续模型。[2]中的构造直接基于具有多重噪声的随机热方程(SHE)的解决方案,但我们在这里的方法需要略有不同,因为SHE用一般的L´Evy噪声解决方案(对于最近的开发项目,请参见[21])并未显示出辅助的规律性。因此,通过截断噪声的“小跳跃”部分获得的噪声的近似值来定义我们的连续模型。这种结构不是定向聚合物的特定特定的,并且可以应用
我们介绍了在高折射率的二氧化硅玻璃玻璃玻璃玻璃玻璃玻璃玻璃玻璃的整体研究中的全面研究,在不同的飞秒泵浦波长和输入极化状态下。我们首先基于与熔融二氧化硅在48 THz和75 THz的共焦拉曼显微镜基于共焦拉曼显微镜的观察结果。然后,当分别在1200 nm,1300 nm和1550 nm处泵入异常分散体时,我们演示了从700 nm到2500 nm的宽带超脑产生。相反,在1000 nm的自相度调制和光波破裂的1000 nm处泵送时,会产生较窄的SC光谱。与包括新拉曼响应的非线性schr odinger方程的数值模拟发现了一个良好的协议。我们还研究了集成波导的TE/TM极化模式对SC生成的影响。
LaylaLavallé,ClémentDondé,lukaszgawęda,JéromeBrunelin,Marine Mondino。在精神病的束缚中没有表现出没有成熟精神病症状的个体的自我认识受损:荟萃分析。心理医学,2020,51(16),第2864-2874页。10.1017/S003329172000152X。hal-04440333
1罗马的INAF媒体观察员,通过di Frascati 33,00078 Monte Porzio Catone,意大利电子邮件:Antonello.calabro.calabro@inaf.it 2 Trieste的Inf-Asonolical Personical Personical of-B.B.通过G.B.TIEPOLO 11,34143意大利Trieste 3 Ifpu-宇宙基本物理学研究所,通过贝鲁特2,34151意大利Trieste 4 Supa 4 Supa,爱丁堡大学天文学研究所,爱丁堡大学,皇家天文台,爱丁堡EH9 3HJ,UK 5 Iniforno pom pogernonna pogernoso, /3,40129意大利博洛尼亚6博洛尼亚大学物理与天文学系(DIFA),通过Gobetti 93/2,40129 Bologna,意大利的Bologna 7 Institution of Resjuction convositionuciporpiparinar en Ciencia an Ciencia en ciencia en Ciencia y Ciencia y Ciencia y Ciencia y Ciencia ycienogía,raounnoragialial,raúlition,raúlition,laounnoragna y serano y serena塞雷纳大学,公平。Juan Cisternas 1200 Norte,La Serena,智利9 Inf -Arcetri的Astro Phyic天文台,Largo E. Fermi 5,50125佛罗伦萨,意大利佛罗伦萨10 Cosmic Dawn Center,Niels Bohr Institute,Copenhagen University,Julian Maries Maries Vej 30,Denmard Coptarys forsers forsars copenhagen大学赫特福德郡,帽子,英国,英国12个太空望远镜科学研究所,3700 San Martin Drive,Baltimore,Baltimore,MD 21218,美国13欧洲南部天台观测站(ESO),Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Niels Bohr Bohr Bohr Bohr Bohr,Bohr哥本哈格大学,Lyngbyvej 2,Lyngbyvej 2,2100 Copenhagen,2100 Copenhagen,2100 Copenhagen,Copenhagen,Copenhagen,Copenhagen,Copenhagensrack 15英国伦敦WC1E 6BT的高尔街16号Genève,deGenève大学,51 ch。des Millettes,1290 Versex,瑞士17 CNRS,IRAP,14 Avenue E. Belin,31400 Toulouse,法国18天津天文天体物理学中心,Tianjin师范大学,Binshuixida 393,300384 Tianjin,Tianjin,Prin
a. 生成药物适应系的实验设计示意图。通过增加药物浓度(从 1 到 320 μM)对 Kuramochi 细胞系进行挑战。标明了具体剂量和治疗持续时间。从代表性显微镜图像(放大 5 倍,比例尺 = 50 μm)显示了细胞形态。b. 适应系的细胞活力显示了 9 天治疗期间对 olaparib 的反应。剂量范围与生成线所用的剂量范围相同。所有数据点均相对于载体处理的对照(针对每个相应的线)进行了标准化,并代表 3 个独立实验(每个实验 6 个技术重复)的平均值及其各自的标准误差线 (sem)。c. 适应细胞系平均转录组之间的 Spearman 相关性。d. 各个系上的 scRNA-seq 数据的 UMAP 表示。颜色和数字表示由 Louvain 聚类确定的亚群。e.根据适应系中 Spearman 等级相关系数对亚群进行聚类。标明了定义的五种主要转录状态。f. 适应系中五种状态下每个群体的细胞频率。图 1e 中显示的亚群聚类结果基于属于特定亚群的细胞分配到各自的状态。
连续体(BICS)中的结合状态是零宽(有限的寿命),即使它们与连续的扩展状态共存,但仍在系统中仍然存在的特征模式。产生的高频共振可能在光子整合电路,过滤,传感和激光器中具有显着应用。在本文中,我们证明了基于光子三轴腔的简单设计可以同时显示Fabry-Pérot(FP)和Friedrich-Wintgen(FW)BICS,并且它们的出现非常依赖于将腔附着在外部介质上的方式。我们首先考虑一个对称腔,其中长度D 3的存根被两个长度D 2的存根包围,所有存根均由长度D 1的段隔开。当两个端口之间插入腔时,我们在理论上证明了在长度d 1,d 2 2和d 3之间的可辨式条件下,在实验上证明了FP类型的对称BIC(S-BIC)和抗对称BIC(AS-BIC)的存在。S-BIC和AS-BIC可能会彼此交叉,从而产生双重变性的BIC。通过打破腔体的对称性,AS-BICS和S-BIC可以融合在一起,并实现FW型BIC,其中一种共振保持为零,而另一个共振却宽阔。通过考虑另外的两个配置,其中三端腔与一个或两个端口仅在一个侧连接起来,可以在结构内部诱导其他BIC。通过略微使BIC条件略有失调,后者转变为电磁诱导的透明度 /反射或FANO共振。最后,可以设计这种三重速度腔,以实现某些频率的接近完美吸收。使用同轴电缆在辐射频域中通过实验确认了从绿色功能方法获得的所有分析结果。
在这项工作中,我们从理论上提出并在实验上证明了在光子晶体平坦带上连续体(BIC)中的超结合状态的形成。这种独特的状态同时在布里渊区的扩展区域中表现出增强的质量因子和接近零组的速度。在拓扑转换时实现了对称性保护的BIC固定在K = 0与两个Friedrich-Wintgen Quasi-BICS合并,这是由相反对称性的有损光子模式之间的破坏性干扰引起的。作为概念验证,我们采用了Ultraflat Super BIC来证明单个颗粒的三维光学诱捕。我们的发现提出了一种新颖的方法,可以在次波长量表上为创新光电设备的次波长量表进行工程。
% 5702.13 1.12(11)×10 -25 48.5 17.9 33.6 5715.30 1.07(16)×10 -25 49.1 17.3 33.6 5752.04 2.88(95)×10 -26 61.0 21.3 17.7 5816.60 2.60(28)×10 -26 29.4 37.3 33.3 5842.20 1.61(30)×10 -26 28.8 39.7 31.5 1.90(30)×10 -26 2.20(30)×10 -26 5875.20 2.42(24)×10 -26 30.5 29.3 40.3 40.2 2.33(24)×10 -26 5905.72 1.33(24) 1.76(20)×10 -26 1.53(20)×10 -26 5933.75 1.03(10)×10 -26 21.3 41.3 41.5 37.2 1.21(10)×10 -26 1.14(10)×10 -26 1.17(10)×10 -26 1.17(10)×10 -26 1.17(10 -26 1.17(10)×10-26×10-26×10-26×10-26×10-25(10-25) 1.18(10)×10 -26 6022.06 7.4(15)×10 -27 25.9 30.6 43.5 6120.45 7.0 7.0(12)×10 -27 14.6 34.0 51.4 6224.09 3.5(12)3.5(12)×10 -27 17.9 36.6 36.6 36.6 45.5 6369.00 a <5×7 636.00 a <5×7 67 636.6369.00 a <5×27 67 636.636.00 a <5.5×7 67 66.6 34.6 6.9(65)×10 -27 85.4 5.9 8.7 6562.18 9.1(40)×10 -27 79.4 8.0 12.6 6637.62 4.7(14)×10 -26 71.8 6.9 21.9 21.3 21.3 257
解锁光谱对纳米级的真正潜力需要开发稳定和低噪声激光源。在这里,我们开发了一个基于由飞秒纤维激光器泵送的全正常分散纤维的低噪声超脑(SC)来源,并显示出高分辨率,在近芳烃(NIR)区域的频谱分辨出近场测量。具体来说,我们探讨了对无孔径散射型扫描近场光学显微镜(S-SNOM)的减少噪声要求,包括SC的固有脉冲到脉冲波动。我们使用SC的光源来展示第一个NIR,频谱解决的S-SNOM测量,这种情况是最先进的商业SC来源太嘈杂而无法有用。我们在单个测量中绘制了在波长区域的1.34–1.75μm波长区域中表面等离子体偏振子(spp)波的传播,从而实验表征了NIR中SPP的分散曲线。我们的结果代表了一种技术突破,有可能在近场研究中实现低噪声SC来源的广泛应用。