过去几年,“印太”构想获得了相当大的关注。大多数有影响力的国家都采用了这一新的区域主义地理概念,并制定了与该地区接触的全面战略。这些战略有望重塑全球安全和经济架构。鉴于地理位置,全球向印太的倾斜对印度有直接影响。本文研究了不同国家的印太战略,以确定印度与其他参与国的利益交汇点。本文认为,尽管全球主要大国的印太战略轮廓各异,但它们在几个重要问题上趋于一致,包括供应链多样化、网络和海上安全以及改善连通性,这为印度带来了有趣的经济机会。
本研究系统地分析和优化了纯铜电子束熔炼工艺。结果表明,为了可靠制造,应优化预热温度以避免孔隙率和部件变形。电子束应完全聚焦,以防止收缩空隙(与负散焦相关)和材料飞溅(与正散焦相关)。较低的网格间距(例如 100µm)可使表面更光滑,从而提高密度可靠性,而较高的网格间距可达到更长的悬垂。还采用了合适的起始轮廓策略来减轻边界孔隙率、降低侧面粗糙度并提高几何精度。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
在胎儿脑MRI的常规临床评估中使用的三个关键生物识别线性测量值是脑双发直径(CBD),骨双发性直径(BBD)和跨小脑直径(TCD)。这些措施是根据既定指南[3,4]手动对临床医生进行的单独MRI参考切片进行的,这与基于US的基于US的测量指南不同,指定了如何建立扫描成像平面,如何在每个测量中选择此卷中的参考切片,以及如何识别两个解剖学测量值以识别线性测量值。CBD和BBD测量值是在同一切片上进行的,并垂直于中间线(MSL)绘制。通过在胎儿脑小脑轮廓上选择两个抗斑点地标点,在不同的参考切片上测量TCD,从而给出小脑的直径。
摘要:微纳结构的应用日益广泛,这引起了人们对包含尺度效应的理论的兴趣,因为经典连续体理论在捕捉依赖于尺寸的效应方面存在局限性。出于这样的动机,本文使用边界元法 (BEM) 进行三维弹性静力学微结构建模。为了解释微结构效应,采用了 Aifantis 提出的简化梯度理论,这是 Mindlin 一般理论的具体化。建立了变分论证来确定问题的控制方程和边界条件。该论证解释了梯度弹性的基本解,并借助倒数恒等式构建了积分轮廓表示。Proriol 谱函数的弯曲三角元素用于近似 BEM 离散化的几何和物理参数。所提出的公式得出的结果与文献中的其他分析一致。
1 我们注意到,进一步 NPRM 中的一些提案涉及所有增强器,而不仅仅是节目发起的增强器。进一步 NPRM 中涉及所有增强器的提案包括修订第 74.1204(f) 节,以纳入一种机制,在增强器建设许可申请仍在审理期间解决预期干扰问题;澄清第 74.1231(j) 节,规定祖父级超级 FM 电台只能在其电台类别的标准最大轮廓内实施增强站;编纂要求,即增强站必须在其主电台不广播时暂停运营并提交暂停运营通知;并修改第 74.1232 节,以澄清增强站不得广播其 FM 主电台授权不允许的节目。
使用透明质酸填充剂来矫正面部体积缺陷(包括下颌区域),可以显著改善面部平衡和外观。虽然这种手术具有不可否认的美容效果,但也存在很大的风险,例如轮廓不规则、血管阻塞和皮肤坏死。为了提高下颌区域体积增大的安全性和精确度,应仔细选择注射技术和产品。三十多年来,透明质酸 (HA) 一直被用作真皮填充剂,用于旨在面部年轻化和塑形的微创美容治疗。对于面部畸形、创伤、肿瘤切除后面部毁容或其他先天性或后天性疾病的患者,这些注射剂可以作为手术的替代方案或补充手术程序。
图 1 | 单层 WSe 2 中的窄谱线。a ,沉积有 WSe 2 单层的器件示意图。b ,56 µ m × 56 µ m 范围内 1.525eV 至 1.734eV 能量范围内光致发光强度的等高线图。白色虚线标记了潜在的单层区域。c ,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV (P1) 和 1.7206eV (P2)。d ,P1 和 P2 的提取线宽,绘制为激发功率的函数。低激发功率的光谱显示 P1 和 P2 的分辨率受限线宽。e,P1 和 P2 的光子发射积分计数随着
• 肺炎检测:禁用处理。通常,建议保持此选项为开启,否则将不会处理任何病例 • 生成结构化报告:如果开启,将生成基于 TID1500 模板的带有数值结果的 DICOM 结构化报告(开启) • 高不透明度分割阈值:HU 中的阈值,高于该阈值的不透明度将被视为高不透明度分割 • 可视化单个肺叶(开启)或仅左/右肺(关闭)的分割轮廓 • 打开/关闭 MPR 系列每个切片中量化结果的可视化 • 打开/关闭高不透明度分割轮廓的可视化 • 分割轮廓的厚度:分割轮廓的像素数 • 窗口(中心/宽度):带有分割轮廓叠加的结果系列的默认窗口参数。 • 显示体积渲染:如果关闭,将不会生成体积渲染系列。
从模型输出的观测数据确定物理模型中参数值的随机逆问题构成了科学推理和工程设计的核心。我们描述了一种最近开发的基于测度理论和等高线图概括的随机逆问题的公式和解决方法。除了完整的分析和数值理论之外,这种方法的优点还包括避免引入临时统计模型、无法验证的假设和模型更改(如正则化)。我们提出了一种高维应用来确定风暴潮模型中的参数场。我们最后介绍了最近关于定义随机逆问题的条件概念及其在设计最佳可观测量集方面的工作。
裂缝检测是安全保障和结构状况监测中的一项艰巨任务。建筑物出现裂缝是常有的事。当应力超过阈值时,高层建筑就会出现裂缝。表面裂缝可以通过数字摄影测量法测量和监测。裂缝是借助摄像机通过颜色提取法检测出来的。另一方面,裂缝之间的非裂缝区域具有均匀运动和小应变的特征,这些特征可通过动态活动轮廓法选择。物联网 (IoT) 是一项新技术,旨在使互联网更具沉浸感和普及性。物联网有助于实时监测高层建筑的安全。关键词:物联网 (IoT)、裂缝检测、消防安全、图像处理介绍通过及时监测和
