基于集成物联网设计和 Android 操作的军用多用途现场监视机器人 1 M.Ashokkumar,2 Dr.T.Thirumurugan 电子与通信工程系 基督理工学院 印度本地治里 ashok5june@gmail.com,thiru0809@gmail.com 摘要 — 该项目描述了多用途现场监视机器人的设计、构造和制造,该机器人可用于战场上的地雷探测、有毒气体感应以及温度和湿度传感器监测,而不会带来严重的人工风险。地雷探测器可以探测覆盖的金属,气体传感器可以探测有毒气体攻击,机器人可以通过 Android 手机无线控制。机器人使用 Arduino Uno 微控制器收集传感器信息,并使用 NodeMCU WiFi 连接控制器和机器人。根据来自 Android 应用程序的输入信息,机器人可以在任何地形上移动和攀爬。我们的项目与传统项目的区别在于,Android手机操作和多个物联网云服务器的集成设计。所有机器人传感器信息都传送到云服务器并通过网页查看。这样,机器人既可以用于军事战场,也可以同时在军事总部进行监控。这是一种将现场机器人和物联网技术以可扩展的设计模式进行集成的新颖尝试。设计的额外增强使其成为在布满地雷和其他危险金属物品的危险区域部署和使用的绝佳选择。关键词-机器人技术、嵌入式系统、物联网(IoT)、无线通信和云技术 I. 介绍 地雷是一种植入地球的爆炸装置,由压力、磁场和绊线等触发。它们是当代战斗中最常用的武器之一,最常用作先发制人的屏障和对手威慑。它们是微小的圆形装置,旨在通过爆炸或飞行碎片伤害或杀死人员。大多数地雷由塑料制成,所含金属量与圆珠笔中的弹簧相当。反坦克地雷的发展受到第一次世界大战期间战斗坦克使用的推动。 杀伤人员地雷的建立是为了取代这些可以被敌方士兵轻易移除的大型地雷。
Microchip 的 ATmegaS64M1 AVR ® 微控制器 (MCU) 将具有 CAN 功能的汽车领先 AVR 内核带入航空航天行业。ATmega S64M1 MCU 专为关键航空航天应用而设计,具有增强的辐射、扩展的温度和更高的可靠性。它利用了成熟的 Microchip 工具,这些工具已在全球大众市场的设计中使用。CAN 控制器、功率级控制器、ADC、DAC 和模拟比较器使 ATmegaS64M1 微控制器成为许多最常见的空间应用的绝佳选择,这些应用通常需要较小的占用空间和较低的功耗,例如电机控制和远程终端单元。
摘要。本文提出了一种基于方位/仰角环跟踪控制器的新型模糊PID控制方案,以提高跟踪实时目标的精度。模糊PID控制器由三个模糊逻辑控制器和一个带模型参考自适应控制的PID控制器组成,其中PID控制器的三个参数的自适应增益由模糊逻辑规则进行微调。所提出的控制算法的隶属函数(MF)与一般算法不同,其中输入和输出的MF彼此不同,例如MF类型,MF数量和显示范围。将所提出的模糊PID控制方法的性能与普通PID控制算法进行了比较。仿真验证了模糊PID控制模型跟踪性能的有效性,该模型具有零超调、良好的瞬态性能和快速收敛跟踪能力。模糊PID跟踪控制算法可以提高系统整体性能,为深入研究基于机载光电稳定平台的控制系统奠定理论基础。关键词:模糊PID,跟踪控制器,优化方案,稳定平台
影响 R 1 、R 2 和 R clamp 值的另一个因素与电流消耗预算和输入信号噪声抑制有关。这里更详细地讨论了第二个因素。来自传感器的信号可能有噪声。噪声的时间常数小于采样时间 T 采样 ,对 ADC 来说是透明的,导致输出失真。在这种情况下,额外的专用旁路电容器与钳位电阻器和电阻分压器一起用作低通滤波器。较大的电容器会降低交流阻抗,并且更有效地分流噪声信号。通常,此低通滤波器的时间常数 (R clamp + R 1 || R 2 ) x C noise 应选择为远大于采样时间(根据经验法则,大 5 到 10 倍)。
AVR® ATmegaS128 微控制器 (MCU) 将业界领先的 AVR 内核带入航空航天业。ATmegaS128 MCU 专为增强空间应用的辐射性能和可靠性而设计。它利用了多年来在全球大众市场设计和使用的成熟 Atmel AVR 工具。ATmegaS128 微控制器面向许多最常见的空间应用,这些应用通常需要占用空间小、功耗低以及对电机和传感器进行模拟控制。
管制空域被划分为多个区域。航路区域是距离机场至少 50 公里的空域,相关空中交通管制员负责该区域。空中交通管制员必须接受飞机进入其区域;检查飞机,向飞行员发出指令、许可和建议,并将飞机移交给相邻区域或机场。当飞机离开分配给空中交通管制员的空域时,飞机的控制权将移交给控制下一个区域的空中交通管制员(或塔台空中交通管制员)。与许多现实世界的复杂系统一样,这种环境对操作员提出了多个并发要求,事实上,在航路空中交通管制环境中,空中交通管制员面临的系统包括来自不同方向、以不同速度和高度飞往不同目的地的大量飞机 [1]。空中交通管制员有两个主要目标。主要目标是确保管辖范围内的飞机遵守国际民用航空组织 (ICAO) 规定的分离标准。例如,最常见的间隔标准之一要求雷达控制下的飞机垂直间隔至少 1,000 英尺,水平间隔至少 5 海里。次要目标是确保飞机有序、迅速地到达目的地。这些目标要求空中交通管制员执行各种任务,包括监控空中交通、预测间隔损失(i
摘要:本文设计了使用微控制器的带镜面助推器的太阳能跟踪系统。太阳能正迅速成为全世界的替代电源。为了有效利用太阳能,必须最大限度地提高其效率。最大化太阳能电池阵列功率输出的可行方法是跟踪太阳。本文介绍了使用步进电机、齿轮电机、光电二极管设计和构建太阳能跟踪系统。镜子用作助推器以最大限度地提高效率。整个框架将循环移动,镜子将从南向北移动,反之亦然。原型是围绕一个编程的微控制器考虑的,该微控制器通过基于太阳运动与传感器和电机驱动器通信来控制系统。实验分析了太阳能跟踪器的性能和特性。
和子组件位于定制机柜中,该机柜使用纽约州标准 179 控制器和 330 机柜的许多功能。这种方法允许紧凑的尺寸、可扩展的配置和简化的机柜布线。主要变化是使用 NEMA 总线接口单元 (BIU) 和 EIA/TIA-485 串行接口到机柜设备 (TS2-Type 1),而不是传统的 170/179 C1 连接器或 NEMA A、B、C 和 D 线束。这样做的好处是简化了机柜布线,同时仍允许未来的扩展和灵活性。为了满足这种方法,串行协议的输入/输出 (I/O) 功能必须进行自定义映射(配置),以允许与 NEMA 标准中显示的 I/O 配置不同的 I/O 配置。但是,对 BIU 的 I/O 功能的分配方式与 NEMA BIU 的电子接口一致,这样就无需根据承包商的设计更改 BIU 硬件和软件。