纳米流体具有特殊的特性,使其成为更适用的材料。纳米材料在传热增强方面具有创新的特性。Buongiorno 3 给出了传统液体传热速率增强的理论模型。他强调,只有随机和热泳扩散才是热传输增强的主要机制。纳米材料在提高混合动力发动机、电子设备、核系统冷却器、家用冰箱等的热效率方面非常重要。Shahzad 等人 4 分析了两个旋转盘之间的生物对流对流加热微极纳米材料流。Waqas 等人 5 讨论了具有产热的粘弹性纳米材料的混合对流磁流体动力学流。Anjum 等人 6 探讨了
摘要:本文报告了具有正方形和圆形冷却通道的微通道热交换器的三维数值优化的结果。优化的目的是最大化全局热电导或最大程度地减少全局热电阻。响应表面优化方法(RSM)用于数值优化。在单位细胞微通道的底部表面施加了高密度热通量(2.5×10 6𝑊/𝑚2),并使用ANSYS Fluent Commercial软件包进行了数值模拟。微通道的元素体积和轴向长度𝑁= 10 r均固定,而宽度则是免费的。冷却技术采用单相水,该水通过矩形块微通道散热器流动以在强制对流层流方向上去除微通道底部的热量。在微通道轴向长度上泵送的流体的速度为400≤𝑅𝑒≤500的范围。有限体积方法(FVM)用于描述用于求解一系列管理方程的计算域和计算流体动力学(CFD)代码。研究并报告了水流数量和雷诺数对峰值壁温度和最小温度的影响。数值结果表明,具有方形冷却通道的微通道比具有圆形构型的微量散热器具有最大最大的全局热电导率。数值研究的结果与开放文献中的内容一致。关键字:正方形配置,圆形配置,微散热器,数值优化,导热率[接收到2022年8月1日;修订于2022年10月8日;被接受的2022年11月6日]印刷ISSN:0189-9546 |在线ISSN:2437-2110
环形翅片是一种特殊的机械传热装置,其径向变化,经常用于应用热工程。在工作装置中添加环形翅片可增加与周围流体接触的表面积。翅片安装的其他潜在领域包括散热器、发电厂热交换器,并且它在可持续能源技术中也发挥着重要作用。本研究的主要目的是引入一种有效的环形翅片能量模型,该模型受热辐射、磁力、导热系数、加热源的影响,并添加了改进的 Tiwari-Das 模型。然后,进行数值处理以获得所需的效率。从结果可以看出,通过加强 α 1 、α 2 和 γ 1 的物理强度以及使用三元纳米流体使其效率更高,翅片效率显著提高。添加加热源 Q 1 使翅片效率更高,辐射数更有利于冷却它。在整个分析过程中观察到三元纳米流体的作用占主导地位,并使用现有数据验证了结果。
抽象热浪(HWS)是强调社会和生态系统的高影响现象。预计在世界许多地区的气候中,其强度和频率将增加。尽管这些影响可能是广泛的,但它们可能会受到当地和区域特征(例如地形,土地覆盖和城市化)的影响。在这里,我们利用了在这些精细尺度上阐明热浪的影响所需的高分辨率建模的最新进展。此外,我们旨在了解新一代KM规模的区域气候模型(RCMS)如何调节在众所周知的气候变化热点上热浪的代码。我们分析了15个对流渗透的区域气候模型(CPRCM,〜2–4 km网格间距)模拟及其驾驶,对流参数化的区域气候模型(RCM,〜12-15 km网格间距)的驾驶,来自Cordex旗舰飞行员对对话的模拟。重点是评估实验(2000-2009)和具有一系列气候特征的三个子域。在HWS期间,通常在夏季,CPRCMS表现出比驾驶RCMS更温暖和干燥的条件。与CPRCM相比,RCMS中的热通量分配发生了变化,导致较高的最高温度,每天的峰值高达〜150 W/m 2。这是由CPRCMS中土壤水分含量降低5–25%的驱动,这又与更长的干咒长度(最高两倍)有关。确定这些差异是否代表改进是一项挑战。然而,基于点尺度的最高温度评估表明,与RCMS相比,这种CPRCMS较高/干燥的趋势可能更现实,而参考位点的约70%表明与驾驶RCMS相比增加了附加值,仅当考虑到分布右尾部时增加到95%。相反,根据平坦区域上的高尺度网格方法,发现CPRCMS轻微有害效应。当然,CPRCM会增强干燥条件,对夏季温度高估的敲门含义。这种改善的HWS物理表示是否也对未来的变化产生了影响。
本文介绍了威廉姆森纳米流体和普通纳米流体在旋转锥体延伸表面上流动时非稳态动力学热分布增强的数值研究。回旋微生物的生物对流和磁场热辐射通量是这项研究的重要物理方面。沿 x 和 y 方向考虑速度滑移条件。通过相似函数将主要公式转换为常微分形式。通过使用 Matlab 代码对 Runge-Kutta 程序进行数值求解,解决了五个具有非线性项的耦合方程。浮力比和生物对流瑞利数的参数降低了 x 方向的速度。与粘度成正比的滑移参数降低了流速,从而导致温度升高。此外,温度随着磁场强度、辐射热传输、布朗运动和热泳动值的升高而升高。
Ulavathi S. Mahabaleshwar ca 乌克兰国家科学院单晶体研究所,Nauky Ave. 60,哈尔科夫 31001,乌克兰 b VN Karazin 哈尔科夫国立大学 4,Svoboda Sq.,哈尔科夫,61022,乌克兰 c 达万格雷大学 Shivagangotri 数学系,达万格雷,印度 577 007 *通讯作者:michaelkopp0165@gmail.com 收到日期:2022 年 9 月 23 日;修订日期:2022 年 10 月 30 日;接受日期:2022 年 11 月 3 日 纳米流体和微生物饱和的多孔介质中的热对流研究是许多地球物理和工程应用的重要问题。纳米流体和微生物混合物的概念引起了许多研究人员的兴趣,因为它能够改善热性能,从而提高传热速率。此特性在电子冷却系统和生物应用中都得到了广泛的应用。因此,本研究的目的是研究在垂直磁场存在下,多孔介质中的生物热不稳定性,该介质被含有旋转微生物的水基纳米流体饱和。考虑到自然和技术情况下都存在外部磁场,我们决定进行这项理论研究。使用 Darcy-Brinkman 模型,对自由边界的对流不稳定性进行了线性分析,同时考虑了布朗扩散和热泳动的影响。使用 Galerkin 方法进行这项分析研究。我们已经确定传热是通过没有振荡运动的稳态对流完成的。在稳态对流状态下,分析了金属氧化物纳米流体(Al 2 O 3 )、金属纳米流体( Cu 、Ag)和半导体纳米流体( TiO 2 、SiO 2 )。增加钱德拉塞卡数和达西数可显著提高系统稳定性,但增加孔隙度和改变生物对流瑞利-达西数会加速不稳定性的开始。为了确定热量和质量传输的瞬态行为,应用了基于傅里叶级数表示的非线性理论。在较短的时间间隔内,过渡的努塞尔特数和舍伍德数表现出振荡特性。时间间隔内的舍伍德数(质量传输)比努塞尔特数(热传输)更快达到稳定值。这项研究可能有助于海洋地壳中的海水对流以及生物传感器的构造。关键词:纳米流体、生物热对流、洛伦兹力、热泳动、布朗运动、旋转微生物、磁场 PACS:44.10.+i、44.30.+v、47.20.-k 1. 简介 土力学、地下水水文学、石油工程、工业过滤、粉末冶金、核能等领域的许多理论和实践研究都是基于对多孔介质流动物理学的研究。石油工程师和地球物理流体动力学家对多孔介质中的此类流动非常感兴趣。多孔介质中液层的热不稳定性问题尤为重要。Ingham 和 Pop [1] 以及 Nield 和 Bejan [2] 对大多数多孔介质对流研究进行了出色的综述。Vadasz [3] 在最近的一篇综述中详细研究了旋转多孔介质中的流体流动和传热问题。随着纳米技术的进步,尺寸小于一百纳米的物体已经发展起来。这种纳米尺寸的物体称为纳米颗粒。Choi [4] 建议将这些纳米颗粒悬浮在基液(称为纳米流体)中,以提高基液的导热性和对流传热。因此,纳米流体开始在工业中得到广泛应用,例如冷却剂、润滑剂、热交换器、微通道散热器等等。 Buongiorno [5] 广泛研究了纳米流体中的对流输送,并致力于解释在对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了充满纳米流体的多孔介质中热不稳定性开始的情况,其中考虑了布朗运动和纳米颗粒热泳动。他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括
背景。在恒星对流区中,运动粘度与热扩散率之比,即普朗特数,远小于 1。目的。这项工作的主要目标是研究对流流动和能量传输的统计数据与普朗特数的关系。方法。采用笛卡尔几何中可压缩非旋转流体动力对流的三维数值模拟。对流区 (CZ) 位于两个稳定分层的层之间。在大多数情况下,熵波动扩散的主要贡献来自亚网格尺度扩散率,而平均辐射能量通量则由采用 Kramers 不透明度定律的扩散通量介导。在这里,我们分别研究上流和下流的统计和传输特性。结果。体积平均均方根速度随普朗特数的减小而增加。同时,下行流的填充因子会降低,导致在较低的普朗特数下,下行流平均会更强。这导致对流过冲对普朗特数有很强的依赖性。速度功率谱不会随着普朗特数的变化而发生明显变化,但对流层底部附近除外,因为那里垂直流占主导地位更为明显。在最高雷诺数下,速度功率谱与 Bolgiano-Obukhov k − 11 / 5 的兼容性比与 Kolmogorov-Obukhov k − 5 / 3 的兼容性更好
将神经导航序列导入 Brainlab Curve-100 工作站后,在立体定向引导下精确放置 CED 导管。使用“概览”视图为微创轨迹规划两个入口点,以开发目标复发性肿瘤及其周围神经和血管结构的 3D 模型。将导管固定在 14 French Foley 导管(红色橡胶管)中,然后用 3-0 尼龙(Neurolon)缝线缝合刺伤,并将患者转移并插管至 MRI 套件 [图 1]。通过 MRI 期间钆的释放确认导管位置理想 [图 2]。患者对手术的耐受性良好,术后神经系统完好无损。在神经重症监护室对导管进行密切监测,并按照方案以 0.5 ml/h 的速度输注 MDNA55。
摘要 尝试研究热源/热汇对具有感应磁场的垂直通道中磁流体力学自然对流的相关性。在统一热边界条件(等温和等通量边界条件)下,通过扰动法获得了能量方程微分方程组的解析解,针对小热泳动和布朗扩散参数。通过在 Maple 软件中引入 RKF45 还获得了流动方程的数值解。详细描述并讨论了主动参数如哈特曼数( Ha )、磁普朗特数( Pm )、热源/热汇参数(± S )、浮力比( Br )、布朗运动( Nb )和热泳参数( Nt )对速度、感应磁场、感应电流密度、纳米颗粒浓度、温度和表面摩擦的影响。结果表明,布朗运动参数 ( Nb ) 和浮力比 ( Br ) 增加可增强剪切应力,而哈特曼数 ( Ha ) 和热泳参数 ( Nt ) 则相反。结果还表明,哈特曼数 ( Ha ) 和热泳参数 ( Nt ) 可增强感应电流密度,而热沉参数 ( − S ) 则相反。最后,随着布朗运动参数 ( Nb ) 和热源参数 ( + S ) 的增加,纳米流体的温度可以升高。
通过直接数值模拟研究了经典对称水平对流,瑞利数 Ra 最大为 3 × 10 12 ,普朗特数 Pr = 0 . 1、1 和 10 。对于这两种设置,在热量和动量传输方面的全局量非常一致。与 Shishkina 和 Wagner(Phys. Rev. Lett.,第 116 卷,2016,024302)类似,我们发现努塞尔特数 Nu 与 Ra 的缩放转变在 10 8 ⩽ Ra ⩽ 10 11 的区域中。在临界 Ra 以上,流动经历稳态-振荡转变(小 Pr )或从稳态转变为具有分离羽流的瞬态(大 Pr )。振荡开始于 Ra Pr − 1 ≈ 5 × 10 9 处,分离羽流开始于 Ra Pr 5 / 4 ≈ 9 × 10 10 处。这些开始与缩放转变的开始相吻合。