TSL2560 和 TSL2561 是光数字转换器,可将光强度转换为可直接进行 I 2 C (TSL2561) 或 SMBus (TSL2560) 接口的数字信号输出。每个设备将一个宽带光电二极管(可见光加红外光)和一个红外响应光电二极管组合在单个 CMOS 集成电路上,能够在有效的 20 位动态范围(16 位分辨率)上提供近明视响应。两个积分 ADC 将光电二极管电流转换为数字输出,该数字输出表示在每个通道上测量的辐照度。该数字输出可以输入到微处理器中,其中使用经验公式得出以勒克斯为单位的照度(环境光水平),以近似人眼响应。TSL2560 设备允许 SMB-Alert 样式中断,而 TSL2561 设备支持传统级别样式中断,该中断保持有效,直到固件清除它为止。
PLC:编程逻辑控制器ST:结构文本FBD:功能框图IL:指令列表语言LD:梯形图语言语言语言VFD:频率可变驱动程序SFC:顺序函数sfc:顺序函数表图DC:直接电流AC:替代电流AC:替代电流SRC:Silicon-Controll-controll-Controll-Controlled Rected Rected Rectifier PMERSTORTINT/INTERS Strocition Stroptast/Intement Scart intermotion SCAD SCAD/INTELLITY PMERTISTION TIA/IPPORTIANS IPSOUTERITY TOC ip:ip ip ip ip:和数据采集HMI:人机接口IGBT:绝缘栅极双极晶体管
抽象的抽水储存厂(PSP)被认为是具有低CO 2足迹的批量存储能源最成熟和最可靠的技术。随着可变可再生能源和电源设备的大规模整合,传输系统操作员(TSO)需要更大的灵活性,以确保电能的安全供应。从一家发电公司的角度来看,这代表了收入来源的多元化,因为作为快速频率服务倾向于出现的新市场。,尽管他们可以通过消耗或提供能源来平衡网格功率,但PSP的主要缺点是他们的低时间响应,使他们无法获得这些新的报酬机制。使用电池或超级电容器等技术的技术,使用诸如独立的储能系统(ESS)杂交水力发电厂,以提高PSP的灵活性并解锁提供动态辅助服务的一种考虑的解决方案之一。但是,水电站和环境限制中可用的少量空间可能会使这种解决方案难以访问。传统上,可逆PSP与固定速度机一起使用。静态频率转换器(SFC)通常用于在泵模式下启动组。从这个角度来看,拟议的论文提出了增强静态转换器(E-SFC)的创新概念。它是将ESS直接集成到工厂的SFC中,以使用电源转换器的使用使用。纸张的组织如下。在第3节中,暴露了协同控制方法操作混合动力厂的需求。与与工厂中型电压网格耦合的传统EST相比,它还提供了减少总体资本支出的机会。第1节提出了水力发电厂的灵活性,以适应不断增长的需求和全球新兴的辅助服务。在第2节中,SuperGrid Institute杂交PSP的创新解决方案,并在未来的电力市场中保持了现有的水力发电机队的关键作用。第4节描述了PSP在LOOP(PHIL)测试钻机中实时功率硬件杂交的实验结果。最后,第5节结束并突出了所提出的解决方案的优势。
AC 交流电 AFC 碱性燃料电池 APU 辅助动力装置 ASE 车用斯特林发动机 ATDC 上止点之后 B 电池 BMEP 制动器平均有效压力 BSFC 制动器燃油消耗率 BTDC 上止点之前 C 冷凝器 CC 燃烧室 CCB 燃烧室鼓风机 CO 一氧化碳 CVT 无级变速器 CCGT 联合循环燃气轮机 DC 直流电 DMFC 直接甲醇燃料电池 DOE 能源部 DP 动态规划 E 能源 EC 能量转换器 ECGT 外燃式燃气轮机 ECU 电子控制单元 EECU 发动机电子控制单元 EG 电动发电机 EG 废气 EM 电机 EMS 能源管理策略 EPA 环境保护署 EREV 增程式电动车 FC 燃料电池 FC 燃油消耗 FCS 燃料电池系统 FCV 燃料电池车 G 变速箱 GHG 温室气体 GT 燃气轮机 GWP 全球变暖潜能值 H2 氢气 He 氦气 HEV 混合动力电动车 HEX 热交换器 HSS 氢气储存系统 ICE 内燃机 IcRGT等温压缩再生式燃气轮机 IcRIeGT 等温压缩再生式等温膨胀燃气轮机 IcRReGT 等温压缩再生式再热燃气轮机 IRGT 中间冷却再生式燃气轮机 IRReGT 中间冷却再生式再热燃气轮机
基于可再生能源的 KY 升压转换器和七电平逆变器系统综述 Gopika BS 1* 和 Rajeshwari 2 1 印度泰米尔纳德邦哥印拜陀 Dhanalakshmi Srinivasan 工程学院电气与电子工程系助理教授。 2 印度卡纳塔克邦 Chintamani 政府理工学院电气与电子系高级讲师。 通讯作者(Gopika BS)电子邮件:gopikabs@dsce.ac.in * DOI:https://doi.org/10.46431/MEJAST.2025.8103 版权所有 © 2025 Gopika BS 和 Rajeshwari。这是一篇开放获取的文章,根据知识共享署名许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是注明原作者和出处。文章收稿日期:2024 年 11 月 11 日 文章接受日期:2025 年 1 月 18 日 文章发表日期:2025 年 1 月 25 日
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
能源转型加速了可再生能源的大规模使用,特别是太阳能和风能取代化石燃料[1]。然而,为了确保电力生产和消费之间的平衡,储能系统与可再生能源发电机相结合[2]。这些储能系统还必须满足效率和电网支持方面的要求。欧洲人才项目提出将BESS的电压从传统的低压机架[3]1kV-1.4kV提高到中压机架(2×1 500V,中点接地),以实现高效率(> 99%)并减少所需功率元件原材料的数量。在外部开关调制模式(OSMM)下工作的ANPC转换器的主要优势在于仅在逆变器或整流器模式下使用小开关环路,从而可以提高开关速度[4]。本文重点介绍ANPC转换器设计。作者将在后续文章中对DC/DC转换器进行分析。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:光伏 (PV) 发电机是现代电网的重要组成部分。大多数 PV 系统利用各种最大功率点跟踪 (MPPT) 算法向公用设施注入最大可用功率。然而,在阳光明媚的日子里,持续获得最大功率会导致基于电力电子的 DC-DC 转换器的热应力增加和可靠性降低。本文提出了一种 DC-DC 转换器的热模型,该模型根据热传感器感测到的功率损耗和环境温度来评估累积温度。建议采用热控制策略将转换器主要组件的温度保持在允许的范围内。热控制包括两个阶段:初级阶段,调整 IGBT 开关的开关频率以降低累积温度;次级阶段,调整基于电流的 MPPT 算法以降低通过主开关的最大电流。这种方法旨在延长所用 DC-DC 转换器的使用寿命并降低其运营成本。此外,通过频率响应的稳定性分析确定开关频率变化的允许范围,使用闭环系统的波特图来评估频率响应的稳定性。所提出的热控制是在 MATLAB/Simulink 环境中实现的。相关结果证明了所提出的控制在将温度保持在可接受的范围内并从而提高系统可靠性方面的有效性。