近几十年来,随着微电子技术和计算机技术的进步,矩阵变换器 (MC) 越来越受到研究人员的关注,因为与传统的 AC-DC-AC(背对背)变换器相比,它具有诸多优势,例如:体积小、双向功率流、功率调节能力强、单位功率因数运行、不需要直流母线电容器 [1-5]。文献中通常使用文图里尼和空间矢量调制 (SVM) 方法来解决 MC 控制问题。文图里尼方法的谐波率较低。然而,降低开关损耗是 SVM 方法的主要优势 [6-8]。在 MC 的输入端使用无源滤波器对于避免电流谐波注入电网是必要的。在这种情况下,需要提出几种类型的输入滤波器来解决
由带有直流纳米电网 (NG) 的分散能源供电的电动汽车 (EV) 充电站为不间断充电提供了一种选择。NG 由光伏 (PV) 和风能等可再生能源 (RES) 供电。当可再生能源产生的多余电力存储在本地能源存储单元 (ESU) 中时,可在可再生能源电力短缺时使用。在 NG 超载和 ESU 能源需求旺盛期间,移动充电站 (MCS) 可提供不间断充电。MCS 为电池更换和车辆到电网的可行性提供了一种选择。MCS 需要监控电池的充电状态 (SOC) 和健康状态 (SOH)。SOC 和 SOH 的监控与电压、电流和温度等各种电池参数有关。开发了一个实验室原型,并测试了 EV 到 NG 和基于物联网 (IoT) 监控电池参数的实际可能性。
电源电压范围,V CC (见注释 1) –0.5 V 至 6.5 V ......................。。。。。。。。。。。。。。。。。。。。。。。输入电压范围,V I(任何输入)–0.3 V 至 V CC + 0.3 V 。.....................。。。。。。。。。。。。。。。。。。。。。。输出电压范围,V O –0.3 V 至 V CC + 0.3 V 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.....正参考电压,V ref+ V CC + 0.1 V ................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。负参考电压,V ref– –0.1 V 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。峰值输入电流,I I(任何输入)± 20 mA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。峰值总输入电流,I I(所有输入)± 30 mA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...............工作自然通风温度范围,T A :TLC2543C 0°C 至 70°C ..........。。。。。。。。。。。。。。。。。。。。。。。。..TLC2543I –40 ° C 至 85 ° C ................................TLC2543M –55 ° C 至 125 ° C ..........。。。。。。。。。。。。。。。。。。。。。。存储温度范围,T stg –65 ° C 至 150 ° C 。.....................。。。。。。。。。。。。。。。。。。。。。。。。......距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒 260 ° C ......。。。。。。。。。。。。。。。。。。。。。
本文介绍了一种全面的方法来表征光伏系统的任务概况,通过该方法可以获得一组强大的相关信息,并用于改进电源转换器的设计。准确地表征光伏系统并非易事,本文旨在介绍如何获取光伏实场任务概况的详细方法。本文考虑了三个气候不同的城市,并使用了四个变量的大型数据集:全球水平、直接和散射辐照度以及环境温度。数据以一分钟的间隔在多年内进行测量。对于每个位置,分析了四种面板方向方案:水平位置、固定倾斜、单轴和双轴机械跟踪器。使用了基于测量数据和安装类型的数学模型来估计瞬时平面辐照度。建立了每个城市太阳能和环境温度的平均概况;这些曲线被用作估算商用光伏板年能量产量的输入,该电池板经过数学建模和验证。研究了一年中一分钟分辨率下的电流和功率处理,以及每种情况下最常见和最重要的操作点。还研究了与环境条件相关的面板工作温度及其与能量产量的关系。最后,进行了全面的讨论,以了解不同的任务如何
本文提出了一种全面的方法,用于描述光伏系统的任务概况,通过该方法可以获得一组强大的相关信息,并用于改进电源转换器的设计。准确描述光伏系统并非易事,本文旨在介绍一种详细的方法,说明如何获取光伏实场任务概况。考虑了三个气候不同的城市,并使用了四个变量的大型数据集:全球水平、直接和散射辐照度以及环境温度。数据以一分钟为间隔测量多年。对于每个位置,分析了四种面板方向方案:水平位置、固定倾斜、1 轴和 2 轴机械跟踪器。使用了一个数学模型,根据测量数据和安装类型估计瞬时平面辐照度。为每个城市建立了太阳能和环境温度的平均曲线;这些曲线被用作估算商用光伏板年能量产量的输入,并对其进行了数学建模和验证。研究了一年中一分钟分辨率下的电流和功率处理,以及每种情况下最常见和最重要的操作点。还研究了与环境条件相关的面板工作温度及其与能量产量的关系。最后,全面讨论了不同的任务曲线如何影响光伏电源转换器的功率处理,以及这种特性如何有助于电力电子设备的预尺寸和寿命分析。2017 Elsevier Ltd. 保留所有权利。
• PN-EN 55011:2012 - Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement • PN-EN 55022:2010/AC:2011 - Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement • PN-EN 55024:2011/A1:2015-08 – Electromagnetic compatibility (EMC) - Information technology equipment immunity特征 - 测量的限制和方法•PN-EN 60950-1:2007/A2:2014-05-信息技术设备 - 安全 - 安全 - 第1部分:一般要求•EMC 2004/108/WE - 电磁兼容性指令•LVD•LVD 2006/95/95/WE - 低压指令•PN-PN-EN 60825-1-10825-1:2014-14-14-14-14:2014:2014:2014 e:2014 e:::::2014 e:::::2014 e:::2014::::::::::2014: IEC 61000-4-2电磁兼容性(EMC) - 第4-2部分:测试和测量技术 - 静电排放免疫测试•IEC 61000-4-3电磁兼容性(EMC) - 第4-3部分 - 第4-3部分:测试和测量技术 - 启用,电气征用,电动机61000-电动机66-电源,IEC 41 000 - IEC 6 000 - IEC 6 000 - IEC 6 000 - IEC-61000- iec-66 (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test • IEC 61000-4-5 Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test • IEC 61000-4-6 Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted由射频磁场引起的干扰•IEC 61000-4-8电磁兼容性(EMC) - 第4-8部分:测试和测量技术 - 功率频率磁场免疫测试
摘要:介绍了浮式液压波浪发电装置——(龙一号)的最新研究进展。龙一号是一种点吸收式波浪能转换装置,利用具有储能功能的液压发电系统作为中间环节,实现机械能、液压能和电能的转换。建立了液压发电系统的数学模型,分析了蓄能器的调节作用。仿真结果表明,蓄能器对液压发电系统中压力和流量的控制与调节作用明显,验证了蓄能器可以稳定周期运动激励产生的电能。
TSL2560 和 TSL2561 是光-数字转换器,可将光强度转换为数字信号输出,可直接进行 I 2 C (TSL2561) 或 SMBus (TSL2560) 接口。每个设备将一个宽带光电二极管(可见光加红外光)和一个红外响应光电二极管组合在单个 CMOS 集成电路上,能够在有效的 20 位动态范围(16 位分辨率)上提供近明视响应。两个积分 ADC 将光电二极管电流转换为数字输出,该数字输出表示在每个通道上测量的辐照度。此数字输出可以输入到微处理器中,其中使用经验公式得出以勒克斯为单位的照度(环境光水平),以近似人眼响应。TSL2560 设备允许 SMB-Alert 样式中断,而 TSL2561 设备支持传统级别样式中断,该中断保持有效,直到固件清除它。
推导了采用负电子亲和力 NEA 金刚石发射极电极的真空热电子能量转换装置 TEC 的空间电荷限制输出电流模式的理论。该理论通过假设电子表现为无碰撞气体并自洽地求解 Vlaslov 方程和泊松方程而发展。讨论了该理论的特殊情况。执行计算以在各种条件下模拟具有氮掺杂金刚石发射极材料的 TEC。结果表明,NEA 材料在输出功率和效率方面优于类似的正电子亲和力材料,因为 NEA 降低了发射极的静电边界条件,从而减轻了负空间电荷效应。© 2009 美国真空学会。DOI:10.1116/1.3125282
模拟混频器由键控信号控制,以在视频 DAC 的输出和模拟 RGB 输入之间切换。模拟 RGB 输入需要以直流耦合的方式与模拟混频器接口,而且这些 RGB 输入仅限于没有同步电平基座的 RGB 信号。可以通过设置 I 2 C 总线位 KEN = 1 来启用键控控制。可以生成两种键控:一种是外部键(当 KMOD[2:0] 全部为逻辑 0 时来自 EXTKEY 引脚),另一种是内部像素色键(当 KMOD[2:0] 不全部为逻辑 0 时)通过将输入像素数据与内部 I 2 C 总线寄存器值 KD[7:0] 进行比较而生成。受 KMOD[2:0] 位控制,有 4 种方式可以比较像素数据(见表 8)。