BAE Systems 开发和生产各种抗辐射太空产品,从标准组件和单板计算机到完整的系统有效载荷。BAE Systems 专注于广泛的抗辐射电子产品领域,包括 ASIC、专用标准产品 (ASSP)、微处理器、存储器、FPGA 和单板计算机。多年来,该公司一直生产供内部使用的电源产品,最近在其标准产品组合中引入了负载点转换器 (POL)。这些产品的输入电压为 3-V 至 5.5-V 或 6-V,并联时额定输出电流高达 14 A 或 22 A,同时提供 100 krad 的总剂量抗扰度。有关更多信息,请参阅 http://www.baesystems.com/en-us/our-company/inc-businesses/electronic-systems/product-sites/space- products-and-processing 。
摘要 本研究重新审视了单自由度波浪能转换器的理论极限。本文考虑了海洋能系统任务 10 波浪能转换器建模和验证工作中使用的浮球进行分析。推导出解析方程来确定运动幅度、时间平均功率和动力输出 (PTO) 力的界限。研究发现一个独特的结果,即波浪能转换器吸收的时间平均功率可以仅由惯性特性和辐射流体动力学系数来定义。此外,还推导出 PTO 力幅的独特表达式,当使用电阻控制来最大化发电量时,该表达式提供了上限和下限。对于复共轭控制,这个表达式只能提供下限,因为理论上没有上限。这些界限用于比较浮球利用波动或升沉运动提取能量时的性能。分析表明,由于每种振荡模式的流体动力学系数不同,因此会存在不同的频率范围,从而提供更好的能量捕获效率。研究了运动约束对功率吸收的影响,同时还利用了非理想的动力输出,发现可以减少与双向能量流相关的损失。计算非理想 PTO 时间平均功率的表达式由机械电效率和 PTO 弹簧与阻尼系数之比修改。PTO
Bikash Sah博士收到了B.Tech。2014年,印度印度阿鲁纳恰尔邦(Arunachal Pradesh)的美国国家理工学院电气和电子工程学士学位,以及印度印度古瓦哈蒂(Guwahati)印度印度科技研究所的电子和电气工程博士学位,2021年。他目前是德国Sankt Augustin的Bonn-Rhein-Sieg Applied Sciences of Bonn-Rhein-Sieg University,用于电子动力和电化学系统的集体负责电力电子产品。他还与德国卡塞尔的弗劳恩霍夫能源经济学和能源系统技术IEE IEE合作。他已经从事工业,学术界和研究实验室的项目已经工作了十多年,这些项目涉及电力电子和电化学系统,着重于电动性,电池,电解和燃料电池系统。他目前的研究兴趣包括
2。瞬时短路电流贡献(对故障水平的贡献):如果短路(电压的步骤变化),点1中描述的补偿电流有助于短路电流。通过有效的网格阻抗和断层阻抗以及整个系统的其他阻抗,在短时范围内确定了时间常数,相位位置和幅度。在短时范围之外,如果仍然存在故障条件,则可以根据特征曲线或可调节的系统特征以受控方式提供转换器电流的正顺序。第一响应与更高级别特征之间的过渡必须不间断,并且尽可能无震动。或者,在短时范围之外,转换器可以继续作为阻抗背后的电压源。快速电流限制以保护系统 - 例如发生故障,残留电压低(接近系统接近的短路) - 是允许的,并且不得导致同步损失。当前限制必须在其优先级方面参数化(例如true-ny-ny-try-ny-the Active或Reactive电流上的优先级)。在不对称网格故障的情况下,还需要针对计数器系统的定义系统行为。
为了最大限度地减少环境和能源问题,分布式可再生能源在过去几十年中取得了显著的进步,尤其是风能和太阳能光伏发电,它们被视为现代电力系统发电的未来。将可再生能源整合到电力系统中需要使用先进的电力电子转换器,这对智能电网的范式提出了挑战,例如,提高效率、获得高功率密度、保证容错能力、降低控制复杂性以及缓解电能质量问题。本文对可再生能源应用的前端转换器(更具体地说是将可再生能源与电网连接的功率逆变器)进行了专门的回顾。值得注意的是,本文的目的并不是涵盖所有类型的前端转换器;重点仅放在基于电压源布置并允许电流或电压反馈控制的单相多级结构上,该结构仅限于五个电压电平。已建立的审查考虑了以下主要分类:(a)无源和有源功率半导体的数量;(b)容错特性;(c)控制复杂性;(d)特定无源元件(如电容器或电感器)的要求;(e)独立或分离直流链路电压的数量。整篇论文介绍了几种特定的五级前端拓扑结构,并对它们进行了比较,强调了每种拓扑作为可再生能源与电网接口候选者的优缺点。
多输入转换器拓扑是直流到直流转换器的组合,用于通过转换器的结构提高整个系统的可靠性、灵活性和效率,并实现对能源管理资源的更好监控。因此,多输入直流-直流转换器将特别受到许多应用的关注,例如微电网、储能系统、混合动力系统、电动和混合动力汽车、卫星系统等。随着转移增加可再生能源的利用率,已经提出了不同的拓扑来组合不同类型的可再生能源,例如光伏板,它具有直流电流和电压特性的优势,可以通过多输入直流-直流转换器集成。MI拓扑有两种类型:非隔离和隔离,非隔离拓扑基于电连接电路(ECC),隔离拓扑基于磁连接电路(MCC)。本文回顾了可用于混合船舶电气系统的多输入控制器(MIC)领域的发展和新趋势。研究了各种类型的MIC。讨论了各种类型的隔离和非隔离拓扑。
许多最新标准都针对相对较短距离内的高数据速率通信,例如未授权 60GHz 频段的 IEEE802.11ay 标准。典型应用是视频流、无线对接等高数据速率应用的电缆替代……或者,通过利用大规模天线阵列,还可以实现小型蜂窝回程和固定无线接入等应用。毫米波频率也用于高分辨率雷达系统(例如在未授权的 79GHz 频段),从而实现小型、低成本和低功耗的解决方案。所有这些应用的共同点是它们使用相对简单的调制方案和非常宽的通道带宽,从而对模数转换器的分辨率和采样率要求非常高。
环境和设备:· 环境温度范围................................. -10 至 40 摄氏度· 湿度................................................... <90%,无凝结· 海拔................................................... 所有规格均在海拔 < 2000m 处引用· 噪声................................................... < 50dBA @ 1m· 整体效率................................................... 85 至 91% 取决于型号· EMC................................................... 优于 EN55-022B· 机柜................................................... 镀锌钢,粉末涂层· 前面板................................................... 5U x 19”,阳极氧化铝· 机柜防护................................................... IP21· 仪表................................................... 数字读数输出输出安培、伏特(相间和相间中性线)、赫兹、千瓦和每相的功率因数。· CE 标志
如今,能源转换在可持续增长和发展中发挥着至关重要的作用。过去,能源转换主要通过基于旋转机械的机电转换器实现。近年来,能源转换过程则由多种电力电子电路完成 [1]。电力电子转换器是一种开关电路结构,用于实现高效的能源转换系统,可用于各种应用,例如可再生能源转换、智能电网布置、能源存储管理和可持续运输。电力电子转换器系统由多种开关拓扑组成,每种拓扑都与特定应用相关。人们不断研究电力电子电路解决方案,以改进现有的转换器拓扑或创建新的拓扑。此外,电力电子设备和无源元件技术的进步导致转换器的品质不断发展,例如高效率、高增益、高功率密度和快速瞬态响应。用肉体的比喻来说,肌肉由拓扑结构表示,而电力转换器的大脑功能则通过越来越多的控制技术来实现。先进的拓扑和控制方法对于满足现代应用日益严峻的需求必不可少。因此,需要研究先进的设计标准、使用创新技术和改进的调节技术,以实现更高效、紧凑、经济高效和可持续的能源转换系统的目标 [ 2 ]。在功率转换器应用于能源转换的领域,多篇文章促进了科学界知识的增长,这些科学界参与了出版物并使用 Energies 来交流和建立这一战略技术发展领域的知识和技能。在本社论中,我们选择了各种文章来传播科学界阅读和引用最多的技术科学贡献,无论是属于 Energies 杂志还是其他出版物。在选择重要文章时考虑的时间范围是 2020 年至 2022 年。下一节根据主要主题对所考虑的论文贡献进行了分类。此外,还总结了每篇文章的具体重点和价值。