摘要 - 集合检测是各个领域的基本问题,例如机器人技术,计算物理和计算机图形。一般而言,碰撞检测被作为计算几何问题,而所谓的吉尔伯特,约翰逊和Keerthi(GJK)算法是当今最采用的解决方案。在1988年推出时,GJK仍然是计算两个3D凸几何形状之间距离或碰撞的最有效解决方案。多年来,它被证明是高效,可扩展的和通用的,在宽类凸形的形状上运行,范围从简单的原始词(球体,椭圆形,盒子,盒子,锥,锥,胶囊等)到涉及数千个顶点的复杂网格。在本文中,我们通过利用这两个问题是从根本上优化概率的事实来介绍了凸几何之间加速碰撞检测和距离计算的几项贡献。值得注意的是,我们确定GJK算法是凸优化中良好的Frank-Wolfe(FW)算法的特定子案例。通过调整将Polyak和Nesterov加速与Frank-Wolfe方法联系起来的最新作品,我们还提出了经典GJK算法的两个加速扩展。通过涉及日常生活对象的数百万碰撞对的广泛基准,我们表明,这两个加速的GJK扩展大大减轻了碰撞检测的总体计算负担,导致计算时间高达两倍。最后,我们希望这项工作将大大降低现代机器人模拟器的计算成本,从而允许在很大程度上依赖模拟(例如增强学习或轨迹优化)的现代机器人应用加速。
摘要。受到跨各个应用领域的反相反优化(IO)的最新成功的启发,我们提出了一种新型的离线增强学习(ORL)算法,用于连续状态和动作空间,利用IO文献中的凸损失函数,称为“凸丢失函数”。为了减轻在ORL问题中通常观察到的分布变化,我们进一步采用了强大的,非毒性模型预测控制(MPC)专家,使用来自模型不匹配的内在信息来指导动力学的名义模型。与现有文献不同,我们强大的MPC专家享有确切且可拖延的凸重新印象。在这项研究的第二部分中,我们表明,受提议的凸损失功能培训的IO假设类别具有丰富的表现力,并且在使用Mujoco基准的低DATA基准中的最先进的方法(SOTA)方法进行了竞争性绩效,同时使用了三个较少的资源,需要很少有参数,几乎需要。为了促进结果的可重复性,我们提供了实施提出算法和实验的开源软件包。
我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,和 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还基于来自量子信息理论的谱信息散度提供了计算效率更高的松弛。对于上述所有任务,除了提出新的松弛之外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
摘要 我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,以及 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还提供了基于量子信息理论的谱信息散度的计算效率更高的松弛方法。对于上述所有任务,除了提出新的松弛方法外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
摘要 - 书中检索是一个代表性的反问题,其中仅使用信号的傅立叶变换的测量幅度才能恢复信号。深度学习的算法比标准算法更令人满意地重建,例如交替的投影处理和凸放松方法。但是,他们通常无法重建细节或纹理。最近,已经利用扩散模型来解决傅立叶相检索问题。这些算法提供了现实的结果,但是由于生成模型的性质,可以在重建中显示实际图像中的不存在细节。为了应对这些问题,我们提出了一种新型算法,称为“红色强调”,结合了差异扩散采样AP-ap-aper和相位检索的凸松弛方法。尤其是,用于相位检索的经典优化问题被用作额外的正则化,以在变化采样过程中正确重建相位信息。我们的实验结果证实,与现有的傅立叶相检索算法相比,所提出的红色强调可提供定性和定量改善的性能。索引术语 - 较高的相位检索,扩散模型,通过deno的调节,凸松弛
我们的目标是理解自然界中可能出现的量子系统的所有可能状态的集合的几何形状。这是一个非常普遍的问题;特别是因为我们并不试图非常精确地定义“状态”或“系统”。事实上,我们甚至不会讨论状态是事物的属性,还是事物准备的属性,还是对事物的信念。然而,我们可以问,如果集合首先要用作状态空间,那么需要对集合施加什么样的限制?在量子力学和经典统计学中都自然出现了一个限制:集合必须是凸集。这个想法是,凸集是一个集合,人们可以形成集合中任何一对点的“混合”。正如我们将看到的,这就是概率的由来(尽管我们也没有试图定义“概率”)。从几何角度来看,两种状态的混合可以定义为表示我们想要混合的状态的两个点之间的直线段上的一个点。我们坚持认为,给定两个属于状态集的点,它们之间的直线段也必须属于该集合。这当然不适用于任何集合。但在我们了解这个想法如何限制状态集之前,我们必须有一个“直线”的定义。一种方法是将凸集视为平坦欧几里得空间 E n 的一种特殊子集。实际上,我们可以用更少的方法来实现。将凸集视为仿射空间的子集就足够了。仿射空间就像向量空间,只是没有假设特殊的原点选择。通过两个点 x 1 和 x 2 的直线定义为点集
该课程将在线性优化,整数优化和凸优化中教基本概念,模型和算法。该课程的第一个模块是优化和相关数学背景中关键概念的一般概述。该课程的第二个模块是关于线性优化的,涵盖了建模技术,基本的多面体理论,单纯形方法和偶性理论。第三模块是在非线性优化和凸锥优化的上,这是线性优化的重要概括。第四和最终模块是在整数优化的上,该模块以整数决策变量的灵活性增强了先前涵盖的优化模型。课程将优化理论与计算与现代数据分析的各种应用融合在一起。
摘要 — 本研究通过一种计算效率高的鲁棒控制策略解决了联网电动汽车的生态自适应巡航控制问题。该问题在空间域中采用非线性电力传动系统模型和运动动力学的真实描述来制定,以产生凸最优控制问题 (OCP)。OCP 通过一种新颖的鲁棒模型预测控制 (RMPC) 方法解决,该方法处理由于模型不匹配和前导车辆信息不准确而引起的各种干扰。RMPC 问题通过半正定规划松弛和单线性矩阵不等式 (sLMI) 技术解决,以进一步提高计算效率。使用实验收集的驾驶周期评估所提出的实时鲁棒生态自适应巡航控制 (REACC) 方法的性能。通过与标称 MPC 进行比较来验证其鲁棒性,标称 MPC 会导致速度限制约束违规。所提出方法的能源经济性优于最先进的时域 RMPC 方案,因为可以将更精确拟合的凸动力传动系统模型集成到空间域方案中。与传统恒定距离跟随策略 (CDFS) 的额外比较进一步验证了所提出的 REACC 的有效性。最后,验证了 REACC 可以借助 sLMI 和由此产生的凸算法实现实时实现。