等,2020;Williams 等,2021)。脱碳需要大规模快速而显著的供给侧工业转型,既要建立新的系统,也要淘汰现有的系统(Geels 等,2017;Grubert,2020b;McGlade 等,2018;Rissman 等,2020;Williams 等,2021;Zhao & Alexandroff,2019)。然而,脱碳能源系统所需的这种工业化的潜在规模在很大程度上取决于需求侧选择的行使程度(Pye 等,2021)。尽管对创建和部署新工业设施的过程进行了广泛的研究和审查,但明确关注逐步淘汰现有碳排放基础设施及其影响的研究却很少见(Rosenbloom & Rinscheid,2020)。此类研究主要侧重于限制未来化石燃料的开采和使用(Buck,2021;Muttitt & Kartha,2020;Piggot 等,2018;Piggot 等,2020;Zhao & Alexandroff,2019)或从先前行业解构中吸取的教训和框架(Normann,2019;Turnheim & Geels,2013)。详细的研究和建模侧重于预期的未来能源价格(以及潜在的价格冲击)等问题;资本投资轨迹;补救和回收的触发因素和实施;劳动力和培训要求;以及传统能源系统的最小可行规模——如果我们假设我们将成功脱碳,那么这些问题是必须研究的——但在文献中却明显缺失。缺乏对联合实施零碳排放和逐步淘汰化石燃料系统以及相关排放基础设施的协调规划的关注,对在实现美国国内目标(白宫,2021b)和国际气候目标(政府间气候变化专门委员会,2021)所需的快速时间内成功、公正的能源转型(Wang & Lo,2021)构成重大风险。这种风险主要是由于现有的排放化石燃料系统的社会嵌入性以及物质和政治主导地位造成了碳锁定(Unruh,2000;Wang & Lo,2021)。如果没有明确的规划,转型可能会面临重大挑战,例如当地经济衰退、获得高质量能源和基础设施系统的机会高度不平等,以及系统级特征(如可靠性、可访问性和可负担性)协调不力。已有证据表明,美国不协调的煤炭转型增加了出现负面结果的可能性,如经济困难(例如税收和工作损失)、无资金支持的义务(例如养老金、补救承诺、维护和监控)、身份和治理中断以及丧失复原力(Haggerty 等人,2018 年;Macey 和 Salovaara,2019 年;Roemer 和 Haggerty,2021 年)。在零碳和排放化石燃料系统共存的过渡时期,双方在运营上相互制约,我们在本评论中称之为过渡中期,要取得成功和公平,就需要有明确的规划,并以专门的指标为基础,协调零碳基础设施的建设和排放促进型化石燃料基础设施的淘汰。在过渡中期,零碳和碳排放基础设施都无法独自完全支持所有能源服务,而且整个系统并未针对这两种基础设施的社会技术特性进行优化。在过渡中期,适应不良、忽视协同机会和决策不协调的风险很高,尤其是当基础设施同时遇到过去经验中未充分描述的气候、技术和社会动态时。例如,可再生电力系统的发展可能会假设天然气备用发电机将始终可用,以提供低成本的电网支持服务(Phadke 等人,2020 年;Williams 等人,2021 年),或者特定地区的加油站在电动汽车普及率达到一定水平后可能同时面临盈利能力下降。需要专门为过渡动态设计的系统性能指标和其他评估工具,以衡量进展并及时发现新出现的挑战以应对这些挑战,特别是因为有些限制可以更容易地暂时放松以追求长期利益(例如,短期成本增加由长期成本节约和关注对能源负担影响的市场结构抵消),而其他限制则不然(例如,安全性和可靠性)。即使脱碳速度快到足以对负责任的加速构成挑战 (Skjølsvold & Coenen, 2021),也可能需要几十年的时间 (Williams et al., 2021),这将造成一段相当长的时间,在此期间,协调失败可能会加剧现有的结构性挑战 (Wang & Lo, 2021) 并产生新的挑战。能源转型,包括目前的脱碳转型,历来进展缓慢 (Fouquet, 2016)。几十年来,全球能源碳强度一直持平,化石燃料仍供应约 80% 的市场能源 (Hanna & Victor, 2021)。美国和其他地方可再生资源贡献的大幅增加,主要是对持续使用未减排的化石燃料的补充,而不是替代,尤其是在需求增长的情况下。尽管政策倾向于将转型视为“附加问题”(Aronoff 等人,2020 年),但在实践中,没有脱碳就无法完成脱碳转型,这意味着与排放相关的化石燃料基础设施和系统相关的企业、生计和生活方式将消失。除了就业和收入损失等明显挑战外,这种消失(以及对消失的预期)可能会给那些从事依赖化石能源活动的人带来非常具体、可能令人痛苦的社会技术想象和身份威胁(Grubert & Skinner,2017;Jasanoff & Kim,2009;Smith,2019),同时为现任政权行为者抵制转型创造了条件(Geels,2014),并最终减缓转型。实现公正转型的努力
全球气候变化和锂离子电池的成本下降都是电动汽车的推动力,这是私营部门的替代运输形式。但是,高电动汽车在城市分配网格中的渗透会带来挑战,例如网格操作员加载的线路。在这种情况下,网格集成存储系统的安装代表了传统网格增强的替代方案。本文提出了一种对位于电动车辆充电公园的多个电池储能系统进行协调控制的方法,该方法与时间序列建模结合使用线性优化。目的是在现有的电动汽车份额较高的现有分销网格中降低峰值功率。已经开发了一种开源仿真工具,旨在将独立的电源流模型与独立的电池储能系统的模型相结合。这种先前脱节的工具的这种组合可以更真实地模拟存储系统在不同操作模式中对分布网格的影响。进一步的信息来自基于六个关键特征的存储系统的详细分析。案例研究涉及三个充电公园,其中具有各种尺寸的耦合存储系统,以应用开发的方法。通过使用协调的控制策略操作这些存储系统,最大峰负荷可以减少44.9%。峰值载荷减少的上升与较小的存储能力线性增加,而饱和行为可以观察到800 kWh以上。
摘要 对于含可再生能源的微电网而言,频率稳定性至关重要,然而源荷不确定性会导致频率的恶化和储能设备的增加。为此,提出了一种基于滑模方法的含混合储能系统(HESS)微电网频率协调控制策略。首先,设计详细频率调节方案,将频率偏差和区域控制误差分成不同分量作为不同电源的功率参考值。其次,通过设计模糊控制器设定由超级电容和电池组成的HESS的功率阈值,以降低HESS的备用功率,避免不合理的功率输出。第三,建立含HESS的负载频率控制模型,并利用详细频率调节方案设计滑模控制。最后,通过不同算例的对比,验证了所提频率协调控制策略的有效性。
摘要 本文详细阐述了在存在互联能源枢纽的情况下,将重构作为灵活性来源,协调电力和天然气 (NG) 网络的优化调度。对于由多个发电单元、存储和转换技术以及天然气燃烧单元组成的能源枢纽系统,应捕捉天然气和电力载体之间的高度相互依赖性。首次在多能源系统中开发每小时重构能力,以增强最优电力调度和天然气消费模式。通过分别采用电力和天然气网络的稳态韦茅斯方程和交流潮流模型,研究了电力和天然气电网之间的现实相互依赖性。此外,为了处理与风电、负荷和实时电价的强烈不确定性相关的风险,采用了条件风险价值方法。在集成测试系统上实施了所提出的模型,并针对不同情况给出了仿真结果。研究了风险规避水平对可控机组运行成本和最优调度的影响。数值结果表明,可重构能力可将运行成本降低高达 7.82%。
摘要。随着灵活的负载和能源存储的快速发展,它具有巨大的科学和工程价值,可以通过协调的生成网格加载存储控制使用HVDC Feed-Infi-Infer Power提高接收端电源系统的安全性和经济性。在本文中,提出了一种基于模糊的推理方法,以评估具有HVDC馈电功率的接收端功率系统的生成网格加载存储控制能力的协调控制能力。首先,通过考虑发电,电网,电力负载和能源存储的协调和相互作用来构建评估索引。主观重量和客观重量都被认为可以计算每个评估指数的全面权重。此外,在每个评估指数中提出了基于Kmeans聚类的方法。最后,通过提出的方法评估了不同状态下修改的IEEE 57-BUS系统的协调控制能力。
摘要:分布式可再生能源系统如今已广泛安装在许多建筑物中,将建筑物转变为“电力生产者”。现有研究已经开发了一些先进的建筑侧控制,这些控制可以实现可再生能源共享,旨在通过调节储能充电/放电来优化建筑集群级性能。然而,这些建筑侧控制并未考虑电动汽车灵活的需求转移能力。例如,电动汽车通常在插入充电站后就开始充电。但在这样的充电期间,可再生能源发电可能不足以满足电动汽车充电负荷,从而导致电网电力进口。因此,建筑集群级性能并未得到优化。因此,本研究提出了一种建筑生产者的协调控制,通过利用建筑物和电动汽车的电池的能量共享和存储能力来提高集群级性能。首先开发了电动汽车充电/放电模型。然后,基于预测的未来 24 小时电力需求和可再生能源发电数据,协调控制首先将整个建筑群视为一个“集成”建筑,并使用遗传算法优化其运行以及电动汽车充电/放电。接下来,使用非线性规划协调未来 24 小时内各个建筑的运行。为了验证,已在瑞典卢德维卡的一个真实建筑群上测试了开发的控制。研究结果表明,与传统控制相比,开发的控制可以将集群级每日可再生能源自用率提高 19%,同时将每日电费降低 36%。
只有通过研究和反思,社区才能找到一条前进的道路,为当代和后代创造最好的未来。《经济适用房协调行动计划》基于大量信息,描绘了林肯市目前的住房市场。第一章中的市场分析基于对先前住房研究和报告的回顾,包括市中心南部社区发展组织 (SDCDO) 的经济适用房小组委员会计划、各种数据,以及与公众和各种利益相关者团体的密切合作。此外,“一个林肯计划”中的概念(见下页的标注框)有助于确定问题和机会并制定前进的道路。该计划旨在支持林肯市住房市场的发展,以反映构成该市的多元化居民社区。通过这种方式,该过程包括了代表广泛住房提供者和寻找住房者的利益相关者。在整个计划制定过程中,我们都在征求反馈意见,从一开始超过 24 个利益相关者小组的讨论开始,到流程结束时为期两个半月的公开评论期结束,其中包括公开会议、演示以及对草案文件提出反馈的机会。
抽象目标NFκB是炎症性疾病中的关键调节剂。然而,在炎症条件下激活,微调或关闭NFκB活性的关键调节剂知之甚少。在这项研究中,我们旨在研究NFκB特异性长的非编码RNA(LNCRNA)在调节炎症网络中发挥作用的作用。使用第一个遗传屏幕识别NFκB特异性LNCRNA的设计,我们从p65 - / - 和IKKβ-/ - 小鼠胚胎成纤维细胞中进行了RNA-Seq,并报告了进化保守的LNCRNA指定的Mnail(MICE)或HNAIL(人)的识别。Hnail在包括UC在内的人类炎症性疾病中被上调。我们产生了MnailΔNFκB小鼠,其中Mnail近端启动子中两个NFκB位点的缺失废除了其诱导,以研究其在结肠炎中的功能。结果指甲通过隔离和灭活WIP1调节炎症,WIP1是促炎性p38激酶和NFκB亚基p65的已知负调节剂。WIP1失活导致p38的协调激活和NFκB的共价修改,这对于其在特定靶标上的全基因组占用至关重要。指甲可以对P38和NFκB共同激活进行精心策划的反应,从而导致前体细胞分化为骨髓中未成熟的髓样细胞,巨噬细胞募集到炎症区域以及结肠炎中炎症基因的表达。结论指甲直接调节结肠炎的起始和进展,其表达高度与NFκB活性高度相关,这使其成为IBD和其他与炎症相关疾病的生物标志物和治疗靶标的理想候选者。
外部和内部?在主要的市场条件方面表现出良好的外部拟合,但也针对公司的资源和竞争能力量身定制,并得到一系列互补的功能活动(即在供应链管理,运营,销售和营销等领域的活动)。赢得策略也表现出动态拟合,从某种意义上说,随着时间的流逝,即使外部和内部条件都会改变竞争优势测试,即使在外部和内部条件发生变化的情况下,它们以有效的有效状态与公司的处境保持一致,询问该策略是否在帮助公司
参数I.一般参数:el Ini m,t,hl ini n,t初始电气和热量在小时t。 f向上,f dw t系统在小时t上向上/倾斜的横冲直撞储备要求。 F L传输线L容量。,即电气和热量的激励率变化。 p w,t小时t时风电场W的风力输出。 ki b,i,kw b,w公交车单元,公交车场的发病率矩阵。 KQ B,Q,KG B,G BUS-CHP单元,总线锅炉单元的入射矩阵。 ke B,ES,KT B,TS公交电源存储,公交热存储矩阵。 km b,m,kn B,N总线电动负载,加热载荷发生率矩阵。 KP B,pH,KL B,L BUS-P2H存储空间,Bus-Branch发病率矩阵。 TC C的鲁棒性功能成本目标。 目标函数的 tc d基础水平。 em i,em q,em g碳排放配额的热,卫星和燃气锅炉单元。 x l线L的电抗。 αM,多能DRP中电和热量需求的αN参与率。 βR成本偏差因子。 λCO2碳排放价格。 γ少量罚款。 II。 热单元参数:a i,b i,c i燃料功能i的燃料函数i。 p i,p i单位i的最大/最小发电能力。 ru i,rd i单元i的升级/坡道限制。 sug I,SDG I启动/关闭单元的燃油消耗。 t on i,t of imimum on/o o ot/o o i单位i的时间。 λfi单元i的柔性坡道储备价格。 iii。 P2H性能的COP pH系数。,即电气和热量的激励率变化。p w,t小时t时风电场W的风力输出。ki b,i,kw b,w公交车单元,公交车场的发病率矩阵。KQ B,Q,KG B,G BUS-CHP单元,总线锅炉单元的入射矩阵。ke B,ES,KT B,TS公交电源存储,公交热存储矩阵。km b,m,kn B,N总线电动负载,加热载荷发生率矩阵。KP B,pH,KL B,L BUS-P2H存储空间,Bus-Branch发病率矩阵。TC C的鲁棒性功能成本目标。tc d基础水平。em i,em q,em g碳排放配额的热,卫星和燃气锅炉单元。x l线L的电抗。αM,多能DRP中电和热量需求的αN参与率。βR成本偏差因子。λCO2碳排放价格。γ少量罚款。II。 热单元参数:a i,b i,c i燃料功能i的燃料函数i。 p i,p i单位i的最大/最小发电能力。 ru i,rd i单元i的升级/坡道限制。 sug I,SDG I启动/关闭单元的燃油消耗。 t on i,t of imimum on/o o ot/o o i单位i的时间。 λfi单元i的柔性坡道储备价格。 iii。 P2H性能的COP pH系数。II。热单元参数:a i,b i,c i燃料功能i的燃料函数i。p i,p i单位i的最大/最小发电能力。ru i,rd i单元i的升级/坡道限制。sug I,SDG I启动/关闭单元的燃油消耗。t on i,t of imimum on/o o ot/o o i单位i的时间。λfi单元i的柔性坡道储备价格。iii。P2H性能的COP pH系数。能量轮毂系统参数:热交换器的效率。GC最大进口气体能量到能量轮毂。h q最大加热单位q的热产能。h g,h g最大/最小发热能力G。