INTRODUCTION: MANET is an emerging technology that has gained traction in a variety of applications due to its ability to analyze large amounts of data in a short period of time.因此,这些系统正面临各种安全漏洞和恶意软件攻击。Therefore, it is essential to design an effective, proactive and accurate Intrusion Detection System (IDS) to mitigate these attacks present in the network.Most previous IDS faced challenges such as low detection accuracy, decreased efficiency in sensing novel forms of attacks, and a high false alarm rate.OBJECTIVES: To mitigate these concerns, the proposed model designed an efficient intrusion detection and prevention model using COOT optimization and a hybrid LSTM-KNN classifier for MANET to improve network security.METHODS: The proposed intrusion detection and prevention approach consist of four phases such as classifying normal node from attack node, predicting different types of attacks, finding the frequency of attack, and intrusion prevention mechanism.初始阶段是通过COOT优化完成的,以找到从正常节点识别攻击节点的最佳信任值。在第二阶段,引入了混合LSTM-KNN模型,以检测网络中各种攻击。第三阶段执行以对攻击的发生进行分类。结果:最后阶段旨在限制系统中存在的攻击节点的数量。The proposed method's effectiveness is validated by some metrics, which achieved 96 per cent accuracy, 98 per cent specificity, and 35 seconds of execution time.结论:该实验分析表明,提出的安全方法有效地减轻了MANET的恶意攻击。
简介:MANET是一项新兴技术,由于其能力在短时间内分析大量数据,因此在各种应用程序中获得了吸引力。因此,这些系统正面临各种安全漏洞和恶意软件攻击。因此,必须设计一个有效,积极和准确的入侵检测系统(IDS)来减轻网络中存在的这些攻击。大多数以前的ID都面临着诸如低检测精度,降低新型攻击形式的效率以及高误报率。目标:为了减轻这些关注点,提出的模型使用COOT优化和MANET的混合LSTM-KNN分类器设计了有效的入侵检测和预防模型,以提高网络安全性。方法:拟议的入侵检测和预防方法由四个阶段组成,例如对攻击节点的正常节点进行分类,预测不同类型的攻击,发现攻击的频率以及预防预防机制。初始阶段是通过COOT优化完成的,以找到从正常节点识别攻击节点的最佳信任值。在第二阶段,引入了混合LSTM-KNN模型,以检测网络中各种攻击。第三阶段执行以对攻击的发生进行分类。结果:最后阶段旨在限制系统中存在的攻击节点的数量。拟议方法的有效性通过一些指标验证,该指标的精度达到96%,执行时间为98%和35秒。结论:该实验分析表明,提出的安全方法有效地减轻了MANET的恶意攻击。
lo t.at - -L Con 1111 liot>t.ddl NCtt,overo phlR •~ cancrete In ono经过蚀刻的阁楼对抗干净和寒冷的U tretttes,.. Jeam mora
摘要 本文讨论了分数阶 PDF-(1+PI) 控制器在孤立微电网中频率调节的应用,该控制器由 coot 优化算法调整。微电网由生物柴油发电机、生物质热电联产、ORC 太阳能热电厂、微型水力涡轮发电机和风力涡轮发电机组成。此外,还考虑了电池存储和燃料电池。这项工作致力于提出一种有效的方案,该方案可以作为社区或农场的模型,通过生物能源最大限度地减少浪费,并有效地在发电和需求之间实现同步,同时最大限度地减少频率偏差。针对各种实际场景测试了所提出的控制器。结果表明,分数阶 PDF-(1+PI) 表现出比 PIDF 和整数阶 PDF-(1+PI) 控制器更好的瞬态响应。关键词 1 分数阶 PDF-(1+PI) 控制器、基于生物能源的发电机、负载频率控制、微电网、coot 优化算法
1加利福尼亚大学旧金山分校的生物工程和治疗科学系,加利福尼亚州旧金山,美国2结构生物学计划,CUNY高级科学研究中心,纽约,纽约,纽约,10031 3博士。生物学计划,研究生中心 - 纽约市纽约市,纽约,纽约10016 4 Atomwise,Inc。,旧金山,加利福尼亚州,美国加利福尼亚州,美国5化学和生物化学系,纽约市城市学院,纽约,纽约,纽约,10031年,10031年10031 6 Ph.D.生物化学,生物学和化学方案,研究生中心 - 纽约市城市大学,纽约,纽约10016†当前地址:重播,5555 Oberlin Drive,Ste。 120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。 传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。 然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。 为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。 但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。 为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。 Phenix,Refmac,Buster)。生物学计划,研究生中心 - 纽约市纽约市,纽约,纽约10016 4 Atomwise,Inc。,旧金山,加利福尼亚州,美国加利福尼亚州,美国5化学和生物化学系,纽约市城市学院,纽约,纽约,纽约,10031年,10031年10031 6 Ph.D.生物化学,生物学和化学方案,研究生中心 - 纽约市城市大学,纽约,纽约10016†当前地址:重播,5555 Oberlin Drive,Ste。120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。 传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。 然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。 为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。 但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。 为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。 Phenix,Refmac,Buster)。120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。Phenix,Refmac,Buster)。这些QFIT中的这些算法改进是由跨蛋白质范围的上级和几何指标证实的。重要的是,与更复杂的多拷贝集合模型不同,可以在大多数主要的模型构建软件中手动修改QFIT生产的多构形式模型(例如,coot)和拟合度可以通过使用标准管道来进一步改善(例如通过减少创建多配量模型的障碍,QFIT可以促进有关大分子构象动力学和功能之间关系的新假设的发展。
修改目标 DNA 的基因组编辑工具是基因和细胞治疗的有力工具。目前主要的基因组编辑工具是CRISPR-Cas,应用最为广泛;其次是TALEN;最后是ZFN,应用最少。其中CRISPR-Cas和TALEN的基本专利将持续到2030年甚至更晚,因此在医疗领域使用需要高额的授权费用。另一方面,ZFN的基本专利已于2020年到期,它是一种可免许可使用的基因组编辑工具。通过将识别DNA的Zinc Finger与切割DNA的FirmCutND1 Nuclease(由广岛大学自主开发)相结合,可以制作出名为“Zinc Finger-ND1”的纯国产基因组编辑工具。然而,构建功能性ZFN并提高其基因组编辑效率极具挑战性。 [研究成果总结] 传统上,创建ZFN的主流方法是从随机重排的ZF中筛选与目标DNA结合的ZF。然而,创建功能性 ZFN 大约需要两个月的时间,这需要大量的时间和精力。另外,人们设计了一种称为“模块化组装”的方法,用于将 ZF 在基因上连接起来,但在制作三指 ZFN(三个 ZF 连接在一起)时,获得功能性 ZFN 的概率约为 5%,由于生产效率低,该方法无法使用。我们假设,手指数量少导致可识别的碱基数量减少,从而导致产生功能性 ZFN 的效率降低。因此,在本研究中,我们采用模块化组装的方式构建了一个6指ZF-ND1(图1),以增加其识别的碱基数量。结果,我们构建的10个ZF-ND1中,有两个被证实具有基因组DNA切割活性,这意味着我们以20%的概率成功获得了功能性ZFN。为了进一步完善ZF-ND1的功能,我们使用结构建模技术(AlphaFold、Rossetta和Coot的分子建模)来模拟ZF和DNA之间的相互作用(图2)。通过与 Zif268(一种与 DNA 结合的天然 3 指 ZF)的 DNA 相互作用模型进行比较,确定了五种候选突变。此外,通过比较与 Zif268 的 DNA 糖磷酸骨架结合的氨基酸,确定了四个突变候选者。当将这九个候选突变逐一引入功能性 ZF-ND1 时,发现其中三个突变(图 3)可提高基因组 DNA 切割活性。 V109K突变使裂解活性提高了5%,并且我们成功在结构建模的基础上增强了ZF-ND1的功能。