2023 年 11 月 3 日 — 请注意,信息专员通常不会调查您的案件,直到国防部内部审查过程完成。信息。
摘要:瞬态吸收(TA)光谱是确定激发态的能量和动力学的宝贵工具。当泵的强度足够高时,TA光谱包括通常所需的三阶响应和在现场幅度中较高顺序的响应。最近的工作表明,泵强度依赖性的TA测量值允许分开响应顺序,但尚未描述这些较高顺序中的信息内容。我们提供了一个一般框架来理解高阶TA光谱。我们扩展到高阶标准TA的基本过程:地面漂白剂(GSB),刺激发射(SE)和激发态吸收(ESA)。每个顺序介绍了两个新的过程:来自以前无法访问的高度激发态和低阶过程的负面的SE和ESA。我们在每个顺序上显示新的光谱和动态信息,并显示如何使用不同订单中信号的相对符号来识别哪些过程占主导地位。
b" 物业的地址和法定描述 显示所有者和留置权人的所有权证明(如果有) 拟议用途的简要描述,包括以叙述形式表示的与第 7.131 节中规定的审查和评估标准相关的信息。PDF 副本通过电子邮件发送至 scollier@fbgtx.org 场地平面图应按比例绘制,并具有足够的尺寸以显示以下内容: 日期、比例、北角、标题、所有者姓名和编制场地平面图的人员姓名。 所有现有和拟议建筑物和土地改良的边界线、地役权和所需院子和后退距离的位置和尺寸。 场地上现有和拟议建筑物的位置、高度和预期用途,以及 50' 范围内毗连场地上建筑物的大致位置 现有和拟议改良的位置,包括停车和装卸区、行人和车辆通道以及公用设施或服务区。 现有和拟议围栏和屏障的位置。 第 7.940 节 拟议的外部照明,包括灯具类型。第十五条 - 室外照明 现有水道、排水设施和百年一遇洪泛区的中线。在受百年一遇洪泛区影响的场地,不透水覆盖和建筑覆盖以洪泛区外的区域为准。提供相应的计算。现有和拟建街道和小巷的位置和大小。现有和拟建停车和装卸空间的数量,以及适用的最低要求的计算。第 7.860 节分区摘要,包括类型、最小和实际地块面积、退让区、最大和实际建筑高度、建筑覆盖和不透水覆盖。坡度为 10% 或更大的场地,提供现有和拟建的地形和分级(5 英尺最小轮廓间隔)以及侵蚀控制措施。标志的位置。第 29 章需要屏蔽的固体废物容器的位置。第 7.980 节拟建和现有水、下水道和电力设施的位置。街道交叉口和车道上可见三角形的位置。消防通道景观美化,包括场地上现有树木的位置、大小和种类,所有拟建景观区域的面积,第 7.920 节适用费用注:弗雷德里克斯堡市可能需要更多信息来完成对拟建项目的审查。”
Werner综合征蛋白(WRN)是一种参与基因组完整性维持的RECQ家庭解旋酶。WRN中的种系突变会导致过早衰老和癌症易感性。对系统的RNAi和CRISPR筛选数据的分析先前表明,WRN对于具有较高的微卫星不稳定性(MSI-H)的癌细胞系生存至关重要。我们已经开发了有效的和选择性的小分子抑制剂(WRNI),并表明与微磷灰石稳定(MSS)癌细胞系相比,在MSI-H癌细胞系中,对WRN的药理抑制作用会导致致死性和诱导DNA损伤标志物。筛选WRNI在棱镜形式的大量合并的,条形码的细胞系中揭示了MSI-H细胞系中的选择性灵敏度,并表明WRN的药理学抑制与该面板中WRN的遗传消融高度相关,确认了WRN的选择性。体内评估表明稳健和MSI选择性肿瘤回归。这些数据为WRN/MSI-H合成致死关系和支持WRN抑制作用提供了药理概念概念,作为一种用于治疗MSI-H癌症的新型治疗方法。
b'与 ED 一样,对于一般的混合态,EC 也很难计算,而且只在极少数特殊情况下才为人所知。但是,对于纯态,例如前面讨论过的 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 状态,EC = \xe2\x88\x92 Tr \xcf\x81 A log 2 ( \xcf\x81 A ) ,等于 ED 。实现纯态稀释过程的最佳方式是利用两种技术:(i)量子隐形传态,我们在一开始就介绍过,它简单地说是一个双方共享的贝尔态可以用来确定地转移一个未知的量子比特态,以及(ii)量子数据压缩[12],它的基本意思是,一个由 n 个量子比特组成的大消息,每个量子比特平均由一个密度矩阵 \xcf\x81 A 描述,可以压缩成可能更少的 k = nS ( \xcf\x81 A ) \xe2\x89\xa4 n 个量子比特;而且只要 n 足够大,就可以忠实地恢复整个消息。我们稍后会讨论量子数据压缩。纯态在渐近极限下的可逆性。有了这两个工具,爱丽丝可以先准备 n 份 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 (总共 2 n 个量子比特)在本地压缩 n 个量子比特为 k 个量子比特,然后 \xe2\x80\x9csend\xe2\x80\x9d 发送给 Bob,并使用共享的 k 个贝尔态将压缩的 k 个量子比特传送给 Bob。然后 Bob 将 k 个量子比特解压缩回未压缩的 n 个量子比特,这些量子比特属于纠缠态 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 的 n 个副本中的一半。因此,Alice 和 Bob 建立了 n 对 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 。这描述了纯态稀释过程的最佳程序。蒸馏的纠缠和纠缠成本被渐近地定义,即两个过程都涉及无限数量的初始状态的副本。对于纯态,EC = ED [7],这意味着这两个过程是渐近可逆的。但对于混合态,这两个量都很难计算。尽管如此,预计 EC ( \xcf\x81 ) \xe2\x89\xa5 ED ( \xcf\x81 ),即蒸馏出的纠缠不能比投入的多。形成的纠缠\xe2\x80\x94 是一个平均量 。然而,正如我们现在所解释的,有一个 EC 的修改,通过对纯态的 EC 取平均值获得,它被称为形成纠缠 EF [11, 13]。任何混合态 \xcf\x81 都可以分解为纯态混合 { pi , | \xcf\x88 i \xe2\x9f\xa9\xe2\x9f\xa8 \xcf\x88 i |} ,尽管分解远非唯一。以这种方式通过混合纯态构建混合态平均需要花费 P'
文件说明:能源部 (DOE) 监察长 (OIG) 2019-2020 年选定调查的副本 请求日期:2021 年 2 月 22 日 发布日期:2022 年 6 月 29 日 发布日期:2022 年 8 月 8 日 文件来源:能源部 FOIA 请求服务中心 监察长办公室 1000 Independence Avenue, SW Mail Stop MA-46 Washington, DC 20585 传真:(202) 586-0575 电子邮件:FOIA-Central@hq.doe.gov DOE 总部 FOIA 申请表 governmentattic.org 网站(“本网站”)是第一修正案自由言论网站,是非商业性的,向公众免费开放。本网站及其提供的材料(例如本文件)仅供参考。 governmentattic.org 网站及其负责人已尽一切努力使这些信息尽可能完整和准确,但是,在印刷和内容方面可能存在错误和遗漏。governmentattic.org 网站及其负责人对任何个人或实体因 governmentattic.org 网站或本文件中提供的信息直接或间接造成或声称造成的任何损失或损害不承担任何责任。网站上发布的公共记录是通过适当的合法渠道从政府机构获得的。每份文件都标明了来源。对网站内容的任何疑虑都应直接向相关文件的发布机构提出。GovernmentAttic.org 对网站上发布的文件内容概不负责。
大多数此类系统都需要昂贵的高精度光学设备,如激光器、光谱仪和嵌入在设备中的光纤。[19,22] 细胞计数器还依靠加压管系统在微通道中聚焦流体动力流。[23,24] 因此,这些传感器受到其结构刚性和繁琐的光电装置的限制。这使得这些传感器不适合在临床场景中使用,例如在结肠镜检查期间,因为结肠镜检查需要在曲折区域中连续移动,并且需要实时收集数据(即检测出血)。在设计结合软光学传感的 LOC 设备方面已经取得了进展。[25 – 27] 许多光流体传感器已经成功地将聚合物波导集成到微流体中的光中
b“极值图论的一个核心问题是确定给定图 H 在 \xef\xac\x81x 大小的图中诱导副本的最大数量。这个问题最早由 Pippenger 和 Golumbic [13] 研究,近年来已成为广泛研究的主题 [2, 3, 7, 8, 11, 18]。本文重点关注有向图的类似问题。准确地说,设 H 是有向图。有向图 G 中 H 的诱导密度,表示为 i ( H, G ),是 G 中 H 的诱导副本数量除以 | V ( G ) | | V ( H ) | 。对于整数 n ,设 i ( H, n ) 为所有 n 顶点有向图 G 中 i ( H, G ) 的最大值。H 的诱导性定义为为 i ( H ) = lim n \xe2\x86\x92\xe2\x88\x9e i ( H, n )。当 i ( H, n ) 对于 n \xe2\x89\xa5 2 递减时,此极限存在。只有极少数有向图的可诱导性是已知的。一类重要的例子是有向星号。对于非负整数 k 和 \xe2\x84\x93 ,让有向星号 S k,\xe2\x84\x93 为通过对具有 k + \xe2\x84\x93 叶子的星号的边进行有向图,使得中心具有出度 k 和入度 \xe2\x84\x93 。有向星形是所有边都具有相同方向的定向星形,即星形 S k,\xe2\x84\x93 ,使得 k = 0 或 \xe2\x84\x93 = 0。S 2 , 0 和 S 3 , 0 的可诱导性由 Falgas-Ravry 和 Vaughan [5] 确定。为了解决 [5] 中的一个猜想,Huang [10] 扩展了他们的结果,确定了对所有 k \xe2\x89\xa5 2 的 S k, 0 的可诱导性,表明它是通过对入度为 0 的部分进行不平衡的弧爆破而渐近获得的。注意,由于任何有向图的可诱导性等于通过反转所有弧得到的有向图的可诱导性,因此可以考虑有向星号 S k,\xe2\x84\x93 ,使得 k \xe2\x89\xa5 \xe2\x84\x93 。特别地,Huang 的结果还确定了对所有 \xe2\x84\x93 的 S 0 ,\xe2\x84\x93 的可诱导性。 [10] 的结果未涵盖的最小定向星是 S 1 , 1 ,即三个顶点上的有向路径。Thomass\xc2\xb4e [16,猜想 6.32] 猜想 i ( S 1 , 1 ) = 2 / 5,这是通过四个顶点上的有向环的迭代爆炸获得的。
自 2019 年春季以来,瑞典隆德 MAX IV 实验室的 FinEstBeAMS 光束线已为用户提供了一套由电子分光计和用于稀释样品的离子飞行时间质谱仪组成的实验装置。该装置使用户能够研究原子、分子、(分子)微团簇和纳米粒子与短波长(真空紫外和 X 射线)同步辐射的相互作用,并跟踪这种相互作用引起的电子和核动力学。对 N 2 和噻吩 (C 4 H 4 S) 分子的测试测量表明,该装置可用于多粒子巧合光谱。通过线性水平和垂直偏振对 Ar 3 p 光电子谱的测量表明,也可以进行角度分辨实验。还展示了在同一实验过程中比较 Co 2 O 3 和 Fe 2 O 3 中 Co 和 Fe L 2,3 吸收边处稀释样品与固体靶的电子光谱结果的可能性。由于 FinEstBeAMS 光束线的光子能量范围从 4.4 eV 延伸到 1000 eV,因此可以在非常宽的光子能量范围内执行电子、离子和巧合光谱研究。