免责声明这些材料,包括对它们的任何更新,并由Wood Mackenzie Group(“ Wood Mackenzie”)发表,并受到版权,并根据Wood Mackenzie和这些客户之间商定的条款提供给Wood Mackenzie的客户。使用这些材料的使用受其提供的协议条款和条件的约束。所包含的内容和结论是机密的,未经伍德·麦肯齐(Wood Mackenzie)的事先书面许可,不得向任何其他人披露。Wood Mackenzie对这些材料中包含的信息和数据的准确性或完整性不做任何保证或代表,这些信息和数据被提供了“原样”。这些材料中表达的意见是伍德·麦肯齐(Wood Mackenzie)的意见,其中没有包含的意见构成购买或出售证券或投资建议的要约。Wood Mackenzie的产品不提供对任何公司或实体的财务状况或前景的全面分析,任何此类产品中的任何内容均不应作为有关任何实体证券价值的评论。,如果您或其他任何人都以任何方式依靠这些材料,那么伍德·麦肯齐(Wood Mackenzie)不接受,在此范围内不承担任何责任,对与这种依赖有关的任何损失和损害造成的损失和损害的所有责任。
已经观察到,商业纯铜的分数重结晶特性受个人或SN-PB焊料的组成元素的存在影响。为了设计实验,研究了商业上的纯Cu,二进制铜合金(CU-SN和CU-PB)和三元铜合金,CU-SN-PB。铸造合金均质化,处理溶液,然后淬火以完成热处理。为了重结晶,合金将厚度冷至75%,然后在700°k的等温度等于3600秒的时间内将其退火。在本实验中,评估退火样品的分数重结晶为在各个时间步骤中记录的微硬度的归一化差异。为了验证实验结果,著名的Johnson-Mehl-Avrami-Kolmogorov方程也用于预测相关的重结晶行为。可以从研究中推断出,SN-PB焊料合金元素的存在对纯铜的重结晶行为具有积极影响,因为固体溶液加强了,其中锡的效果大于铅的作用。定量分析表明,纯Cu,Cu-Sn,Cu-Pb和Cu-Sn-PB合金的重结晶分别达到99.4%,95.4%,98.4%和89.5%。SN与Cu形成金属间,但PB却没有。此外,SN与杂质形成不同的金属间,并具有与Cu和Pb的FCC不同的BCC晶体结构。结果,退火过程中GP区域的形成和金属间相显示了两种方法之间的重结晶行为的差异。结合使用,冷滚动合金的微结构研究揭示了第二阶段的细长晶粒,并且在700°K的1800秒退火后,合金几乎完全重新结晶。
金属氧化物气体传感器是流行的化学主义传感器。它们用于许多任务,包括Envi Ronmental和安全监控。一些气体感应材料具有光诱导的特性,可通过在光照射时修饰传感器的选择性和灵敏度来增强气体检测。在这里,我们介绍了高度纳米孔Cu 2 o薄膜的气体传感特性,朝向电取(第2号)和亲核(C 2 H 5 OH,NH 3)在环境温度下的气体分子,并通过可见的光照明不同颜色的光照明(红色:632 Nm,Green:530 Nm,blue,blue:468 nm)。Cu 2 O膜是通过反应性高级气体沉积(AGD)技术制造的。样品的表面和结构分析证实了混合氧化铜相的纳米多孔薄膜的沉积。Cu 2 O的气体传感性能在亲电和亲核气体暴露时表现出预期的P型半导体行为。我们的结果表明,可见光照明提供了增强的传感器响应。
铁和硫化微生物在几种自然和工业过程中起着重要作用。卵螺旋体(L.)铁皮氏菌是一种铁氧化的微生物,具有明显的适应性,可在极端的酸性环境中蓬勃发展,包括堆的生物渗透过程,酸性矿山排水(AMD)和天然酸性水。从智利北部的工业生物渗透过程中分离出了牛皮乳杆菌(IESL25)的菌株。该菌株挑战以增加硫酸盐浓度的生长,以评估蛋白质表达谱,细胞形状的变化并确定潜在的兼容溶质分子。结果揭示了三种蛋白质的变化:琥珀酸COA(SCOA)合成酶,异氯酸盐脱氢酶(IDH)和天冬氨酸半二氢脱氢酶(ASD);当菌株以硫酸盐浓度升高时,它们显着表达。ASD在兼容溶质纤维蛋白的合成中起关键作用,该溶质纤维蛋白与羟基切除素一起使用矩阵辅助激光解吸/飞行质谱法的电离时间(MALDI-TOF)。IDH,SCOA和骨蛋白产生之间的关系可能是由于TCA循环引起的,在该周期中,这两种酶产生的代谢产物可以用作前体或中间体的生物合成。此外,在硫酸盐应激条件下生长时,观察到了甲乳杆菌IESL25中不同的丝状细胞形态。这项研究强调了在高硫酸盐水平的存在下可能会发现甲乳杆菌可能的细胞反应的新见解,这通常是在硫化物矿物质或AMD环境的生物含量中发现的。
在当今世界中使用触摸屏的使用已大大增加,尤其是在医疗保健中。近年来,致病微生物从触摸屏到人的传播引起了人们的关注。创建抗菌触摸屏的能力将有助于阻止致病细菌在医疗保健中的传播,而且在任何地方都使用了触摸屏。要创建一种可以掺入触摸屏以使其抗菌剂的材料,它们需要杀死微生物,光学透明并能够进行电力。我们的研究测试了石墨烯 - 铜硫酸盐复合材料的抗菌特性,特别是石墨烯 - 氧化石墨烯和硫化石墨烯。石墨烯 - 铜硫化物,并使用X射线光电子光谱法分析了两种材料。使用标准琼脂盘扩散对枯草芽孢杆菌和大肠杆菌进行测试。两种复合材料均表现出针对枯草芽孢杆菌的抗菌活性。我们的数据显示了创建抗菌触摸屏的有希望的第一步。
不断扩大的老年人群对致病性和与年龄相关的疾病(ARD)的倾向已得到充分记录,已成为一个至高无上的社会问题,对医疗保健行业和更广泛的社会都造成了繁重的负担。ARD表现为身体组织和器官的进行性恶化,最终导致这些重要成分的失败。目前,尚无有效的措施阻碍ARD的发作。铜是一种必不可少的痕量元素,参与了不同细胞类型的各种生理过程。在最近的研究中,已经鉴定出了一种铜依赖性细胞死亡的一种新型变体,称为库proptoposis。这种细胞衰减模式与先前认识的细胞死亡类型不同。cuproptosis会发生,从而导致蛋白质聚集和蛋白质毒性应激,最终导致细胞死亡。在本文中,我们简要概述了有关铜,铜相关疾病的代谢,铜毒性的标志以及调节铜毒性的机制。此外,我们讨论了库层增生突变在ARD发展中的含义,以及靶向丘比托化作为ARD治疗的潜力。
摘要在这项研究中,使用铜和钴金属离子与苯二羧酸(BDC)合成两个不同的金属有机框架(MOF)作为常见的配体。使用X射线衍射,傅立叶变换红外光谱和扫描电子显微镜 - 能量分散光谱表征制备的MOF。此外,使用循环伏安法,电静脉电荷/放电和电化学阻抗光谱法分析了电化学特性。结构特征表明Co-BDC MOF由三维非均匀胶体组成,CU-BDC MOF具有常规的三维立方体结构,具有良好的结晶结构。Cu-BDC MOF的最大比电容为171 f/g,而Co-BDC MOF在1 A/G的电流密度下显示368 f/g。与Cu-BDC MOF相比,CO-BDC MOF的溶液电阻为0.09Ω。此外,Co-BDC MOF通过在2000年电荷释放循环后保留其容量的85%,表现出更好的循环性能。相比之下,Cu-BDC MOF的稳定性较低,容量仅保留78%。最终,在3 M KOH电解质系统中,Co-BDC MOF表现出优异的特异性电容,较低的电阻和增强的环状稳定性。
在这项研究中,我们对在铜(CU)冶炼过程中生产的商业FGD石膏进行了全面检查,并通过探索这些金属不症状的分区和命运来研究其作为钙(CA)富含钙(CA)的材料的潜在用途。所得的碳化端产品显示出71.1%的碳酸钙(CACO 3)含量,具有相对较低的CO 2转化率,这可能归因于商业FGD-GYPSUM中金属杂质的存在。这些金属杂质中的大多数是碳酸过程的输入,源自母体FGD-gypsum矩阵。这导致FGD石膏内的离子强度增加,可能阻碍二氧化碳(CO 2)从气相到水相扩散。在CO 2转化的各个阶段,主要,次要和微量元素的形成分配和检查使我们能够提出四种影响碳化效率的潜在反应途径:(i)金属氧化物的形成,(ii)金属氧化物和氧化羟化物的产生,(III)(III)(iii)金属成分元素的开发(III)元素的开发(IIV)和(IIV)的发展。商业fgd-gypsum适合在非危害废物垃圾填埋场接受。但是,必须强调商业FGD-GYPSUM中的浸出值超过惰性范围和非危害废物标准。尽管碳酸盐端产品的大多数重金属浸出值保持在非危害限制以下,但从碳酸盐端产品中释放一些重金属浸出物可能会限制这些材料的重用选择。
Jisa Ann Sabu,Brijithlal nd和Renjitha rs摘要在本文中,我们使用Merremia Tridentata(L.)Hallier f的铜氧化铜(CUO)纳米颗粒进行了绿色合成。 ,用作上限和还原剂。生物合成的CuO纳米颗粒的特征是紫外可见光谱和X射线衍射(XRD)。将生物合成纳米颗粒的体外抗菌活性与三叉菌的乙醇和乙酸乙醇提取物进行了比较。生物合成的CuO纳米颗粒显示出对枯草芽孢杆菌(MTCC No. 2413),Klebsiella肺炎(MTCC No.3384)的显着抑制活性(MTCC No.3384),脊柱葡萄球菌(MTCC No.87)和Escherichia Coli(Escherichia Coli(MTCC No.443)与其他提取物相比,分别为11 mm。可以将来自三方Merremia的生态友好的基于植物的CuO纳米颗粒的有效抗菌活性作为针对测试的病原体的一种补救措施。关键字:三叉戟,绿色合成,纳米颗粒,氧化铜,抗菌活性引入纳米技术是一个前进的科学领域,它结合了纳米颗粒的特殊活动,大小范围为1-100 nm(Simon等,2022)[19] [19]。为了合成纳米颗粒,已经建议生物或绿色方法来解决物理和化学方法的局限性。植物部分,例如叶子,水果,花,根等。用于制备提取物以执行绿色合成(A. M. Al-Faouri等,2021)[1]。纳米颗粒将使它们在生物医学领域的应用中受益(Bhavyasree等,2022)[4]。生物形成或绿色合成产生的纳米医学可以增强药物的安全性(Mittal等,2022)[11]。纳米药物的潜在益处,包括提高功效,生物利用度,主动靶向能力,更大的剂量反应,药物递送,增强的溶解度,保留效应和较小的毒性会导致化学疗法,放射治疗,靶向治疗,靶向治疗和手术使用纳米颗粒使用Nanoparticles的治疗发展(Sevastre et evastre et naptre et ana,2012)[16] [23] [16] [16]。纳米颗粒目前用于靶向细菌的多药物抗药性(MDR)菌株,该菌株几乎显示出对几乎所有抗生素作用方式的抗性。与抗生素不同,纳米颗粒的作用是通过细胞壁接触而不是穿透细胞发生的。这使细菌对纳米颗粒的抗性较小,并标志着基于纳米颗粒的材料有效治疗细菌感染的重要性(Amin等,2021)[3]。在生物医学区域,生物相容性的CuO纳米颗粒表现出有效的抗菌,抗真菌,抗病毒,抗寄生虫,抗糖尿病和抗氧化活性(Naz等,2023)[13]。由于表面积且大小较小,与常规药物相比,低剂量的CuO纳米果足以表现出其效力(Sulaiman等,2022)[20]。Cuo纳米颗粒的绿色合成在Catharanthus Roseus(Dayana,K.S。et al。,2021)[7],Gloriosa Superba(Naika等,2015)[12],Lantana Camara(Chowdhury,R。等,2020)[5] [5],Camellia sinensis(Jeronsia,J.M.等,2019)[8] Calotropis gigantean a(Sharma,J.K。等,2015)[17] [17],Psidum Guajava(Das,D。&Goswami,S.,S。,2019年,2019年)[6],olidenceo cardamomum(olidenceo cardamomum(Venkatramanan et al。,2020),sarace ean ean ean ean ean ean ean。 Vera(Kumar等,2015)[10],ixora coccinea(Yedurkar等,2017)[24],Ocimum Basilicum(Altikatoglu等,2017)[2]。