为期两周的夏季计算和机器人营地针对中学生。学生将共同努力学习基本的编程技能,并使用工程设计周期来解决问题。
Towards real time monitoring of blood oxygenation in human body through Time Domain Diffuse Correlations Spectroscopy Professor: Prof. Edoardo Charbon Office MC A3.303 e-mail: edoardo.charbon@epfl.ch Lab deputy: Dr. Claudio Bruschini Office MC A3.307 email: claudio.bruschini@epfl.ch Scientific Assistant Contacts: Paul Mos Office MC A3.257电子邮件:paul.mos@epfl.ch项目类型:主项目部分:微工程官方开始日期:任何时间提交最终报告:小组会议上的TBD演示文稿:TBD单光子雪崩二极管(SPAD)摄像机在基于LIDAR的应用程序中广泛使用。弥漫性相关光谱已经用于监测脑血流,并以激光分离为4厘米的光学探针。通过添加时间域,预期较高的信号与噪声比。
图1:提示制造和光学设置。a)微加工过程。圆柱颗粒是通过激光干扰光刻产生的,蚀刻了一个石英底物,其中沉积了800 nm厚的SIO 2层。HF的调谐酸变薄会在SIO 2层中产生锋利的尖端。然后将粒子机械地裂解底物。b)切割颗粒的扫描电子显微镜图像,其中一个尖端的对比度已得到增强,以清晰度。尖端的曲率半径为35 nm。c)光学陷阱的示意图,固定粒子并用锋利的尖端扫描样品表面。d)示意性光学设置。L/2: half-wave plate, PBS: polarizer, AOM: acousto-optical modulator, NPBS: non-polarizing beam splitter, Exp: beam expander, T1:1 : one to one telescope, Obj: Objective, Cond: Condenser, PD: photodiode (to acquire S z ), PSD: position sensitive detector (to acquire S x,y ), IRCCD: infra red CCD camera, VISCCD:可见的CCD相机。)
摘要。我们使用低成本,紧凑的拉曼光谱仪报告快速鉴定单个细菌。我们证明了60 s的程序足以在600至3300 cm-1的范围内获取全面的拉曼光谱。这次包括将小细菌聚集体的定位,单个个体的比对以及自发的拉曼散射信号收集。小细菌聚集体的快速定位,通常由小于十二个个体组成,是通过在24 mm 2的大型视野上进行镜头成像来实现的。无镜头图像还允许单个细菌与探测束的精确比对,而无需标准显微镜。在532 nm处的34兆瓦连续激光器的拉曼散射光被喂入定制光谱仪(原型龙卷风光谱系统)。由于该光谱仪的高光吞吐量,可接受的积分时间低至10 s。我们在七个细菌物种上总共记录了1200个光谱。使用此数据库和优化的预处理,获得了约90%的分类速率。我们的拉曼光谱仪的速度和敏感性为高通量和无损的实时细菌鉴定测定法铺平了道路。这种紧凑和低成本的技术可以使生物医学,临床诊断和环境应用受益。©2014光学仪器工程师协会(SPIE)[doi:10.1117/1.jbo.19.11.111610]
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
注意:这是本通知的免费副本。官方版本将于 2025 年 2 月 3 日在新泽西州登记册上发布。如果本文本与通知的官方版本之间存在任何差异,则以官方版本为准
图3。对前后语音获得的血流动力学反应。从刺激发作中,在-5至35s之间绘制了婴儿和HBB变化的时间疗程。(a)显示了5个月大的婴儿的结果,(b)表示10个月大的婴儿的结果。左图显示左半球的结果,右面板对应于右半球。使用基于群集的置换方法,在5个月大的和10个月大的婴儿中鉴定出簇对前后语音的显着反应(p <.05)。HBO:含氧血红蛋白,HBB:脱氧血红蛋白,HB:血红蛋白。fw:前言,BW:向后的语音。
糖尿病周围神经病(DPN)的早期检测和管理对于降低相关的发病率和死亡率至关重要。角膜共聚焦显微镜(CCM)促进了角膜神经的成像,以检测DPN的早期和进行性神经损伤。然而,它的更广泛的采用受到手动神经量化的主观性和时间密集型性质的限制。这项研究研究了CCM图像的二元分类,以区分健康对照和DPN个体的二元分类,研究了最先进的视觉变压器(VIT)模型的诊断实用性。还将VIT模型的性能与先前使用CCM图像用于DPN检测的卷积神经网络(CNN)进行了比较。使用大约700 ccm图像的数据集,VIT模型达到了0.99的AUC,灵敏度为98%,特定的92%,而F1得分为95%,超过了先前报道的方法。这些发现突出了VIT模型作为基于CCM的DPN诊断的可靠工具的潜力,从而消除了对耗时的手动图像分割的需求。此外,结果增强了CCM作为检测神经损伤的非侵入性和精确成像方式的价值,尤其是在神经病相关的疾病(例如DPN)中。
raav对于基因替代疗法至关重要,将功能基因传递给靶向组织。低电压电子显微镜(LVEM)为有效分析AAV Capsids的结构和质量提供了重要的潜力。基因治疗旨在通过将基因的功能拷贝传递给靶向组织,通常使用诸如AAV之类的病毒矢量来纠正遗传缺陷。这些矢量由封装治疗基因的27 nm直径capsid组成。电子显微镜,包括低温透射电子显微镜(Cryo-TEM),通常用于分析这些病毒颗粒。但是,这些方法通常具有挑战性,需要大型且昂贵的专业设备和条件。
摘要:通过同源物检测对限制光场的相位分辨成像是纳米光学和光子学中计量学的基石,但是到目前为止,其在电子显微镜中的应用已受到限制。在这里,我们通过在连续梁透射电子显微镜中用飞秒光脉冲照明来报告波导结构中光模式的映射。多光子光发射会导致雷伦兹显微镜图像的远期充电模式。所得图像的对比与驻光波的强度分布有关,并在分析模型中进行了定量描述。该方法的鲁棒性以更宽的参数范围和更复杂的样品几何形状(包括微型和纳米结构)展示。我们讨论了对电子显微镜的基于光学显微镜的进一步应用,并与原位光学激发奠定了基础,为传播光场的相位分辨成像成像奠定了基础。关键字:超快传输电子显微镜,非线性光发射,洛伦兹显微镜,站立光波,波导模式,飞秒激光■简介