佛罗里达州2023年的热浪是前所未有的。它开始较早,持续时间更长,比该地区的任何以前的事件都更为严重。在漂白事件中,NOAA在干预措施减轻对珊瑚的伤害时学到了很多东西。通过其任务:标志性的珊瑚礁计划,NOAA取得了长足的进步,以抵消全球气候变化和当地压力源对佛罗里达珊瑚的一些负面影响,包括将珊瑚育苗带到更深,更凉爽的水域,并部署阳光照射以保护其他地区的珊瑚。
该研究发现,耐热的共生科在黄根岛的珊瑚微生物群落中占主导地位。真菌多样性和病原体丰度的增加与较高的珊瑚热漂白易感性密切相关。研究人员在珊瑚中建立了共生性和真菌之间的相互作用网络,这表明限制真菌寄生虫和强烈的相互作用网络的弹性将促进珊瑚的热量适应。
1伦敦动物学会,摄政学会,摄政公园,伦敦,NW1 4ry,英国2 2 2环境工程科学系,佛罗里达州可持续基础设施与环境工程学院,佛罗里达州佛罗里达大学,佛罗里达大学,佛罗里达大学,佛罗里达州盖恩斯维尔大学3美国生物学系,北卡罗来纳大学,北卡罗来纳大学,北卡罗来纳大学,北卡罗来纳大学,美国北卡罗来纳州,北卡罗来纳州,北卡罗来纳州,北卡罗来纳州,北卡罗来纳州,胜利。惠灵顿,凯尔本,新西兰,惠灵顿5个健康的珊瑚礁,健康人倡议,墨西哥,伯利兹,伯利兹,危地马拉,危地马拉,洪都拉斯,洪都拉斯和美国,劳德代尔堡,佛罗里达州佛罗里达州佛罗里达州33312,美国6 Stockholm Resilience Center,斯科德尔姆大学,斯德哥尔摩大学,斯科德尔姆大学,斯科尔姆,瑞典7号,夏威夷州,夏威夷,夏威夷,夏威夷,美国夏威夷8沃里克大学,考文垂,CV4 7AL,英国夏威夷8年生命科学学院9,慕尼黑技术大学,德国弗莱明,德国弗莱斯特大学10研究所,伦敦动物学学会,伦敦公园动物学学会,摄政公园,伦敦,伦敦,NW1,NW1,英国4ry,英国死者
引用Voolstra,C。R.,Suggett,D.J.,Peixoto,R.S.,Parkinson,J.E.,Quigley,K.M.,Silveira,C。B.,…Aranda,M。(2021)。扩展了珊瑚霍洛比特人的自然自适应能力。自然评论地球和环境。doi:10.1038/s43017-021-00214-3
珊瑚 - 阿尔加尔共生的代谢动力学从受精到定居点确定1关键的珊瑚能量脆弱性2 3作者和作者分支机构4 5 Ariana S. Huffmyer 1,2,6 *,Kevin H. Wong 3,Wong 3,Danielle M. Becker 2,Emma Strand 4,Emma Strand 4,Tali Mass 5,Tali Scii 6 M.美国华盛顿州华盛顿州华盛顿市9 2美国罗德岛大学生物科学系,美国,美国,美国,金斯敦10 3罗森斯特海洋与大气科学学院,海洋生物学系,海洋生物学系和11个生态学,迈阿密迈阿密大学,佛罗里达州迈阿密大学,美国佛罗里科学,14 Haifa大学,山Carmel,Haifa,Haifa,以色列15 6 LEAD联系Ashuffmyer@gmail.com 16 17 *通讯:Ariana S. Huffmyer,Ashuffmyer@gmail.com 18 19摘要20 21气候变化加速珊瑚礁的下降,并危及22生态系统恢复的招聘必不可少。 成年珊瑚依靠其共生藻类23(共生性藻类)的重要营养交换,但是这种依赖从受精到24种招募的动力和敏感性被认为是被认为的。 我们调查了蒙蒂普拉·马蒂塔(Montipora Capitata)的13个发育阶段的生理,代谢组和25个转录组变化,这是26个夏威夷的珊瑚,该珊瑚在夏威夷26中继承了从父母到鸡蛋的共生体。 我们发现胚胎发育27取决于母体提供的mRNA和脂质,并在游泳幼虫中迅速转移到了共生体衍生的28营养。 共生的密度和光合作用峰一旦游泳至燃料29层幼虫分散。 44Carmel,Haifa,Haifa,以色列15 6 LEAD联系Ashuffmyer@gmail.com 16 17 *通讯:Ariana S. Huffmyer,Ashuffmyer@gmail.com 18 19摘要20 21气候变化加速珊瑚礁的下降,并危及22生态系统恢复的招聘必不可少。成年珊瑚依靠其共生藻类23(共生性藻类)的重要营养交换,但是这种依赖从受精到24种招募的动力和敏感性被认为是被认为的。我们调查了蒙蒂普拉·马蒂塔(Montipora Capitata)的13个发育阶段的生理,代谢组和25个转录组变化,这是26个夏威夷的珊瑚,该珊瑚在夏威夷26中继承了从父母到鸡蛋的共生体。我们发现胚胎发育27取决于母体提供的mRNA和脂质,并在游泳幼虫中迅速转移到了共生体衍生的28营养。共生的密度和光合作用峰一旦游泳至燃料29层幼虫分散。44相反,在30个变形,沉降和钙化期间,呼吸需求显着增加,反映了这种能量密集型形态学31重组。共生植物的增生是由共生铵同化32驱动的,珊瑚宿主中氮代谢几乎没有证据。随着发育的进展,33个宿主会增强氮隔离,调节共生体种群,并确保固定碳的34转移以支持变态,并具有代谢组和转录组35碳水化合物可用性的指标。尽管藻类共生群落群落保持36个稳定,但细菌群落随着个体发育而转移,与Holobiont代谢37重组有关。我们的研究揭示了开发过程中的广泛代谢变化,38越来越依赖共生营养。变形和沉降是针对预测的气候场景的最大39个关键时期,破坏了40个共生的稳定。相对于敏感的41早期生命阶段,这种高度详细的共生营养交换提供了理解和预测营养的基本知识42共生42共生融合,特别是在气候43变化的未来中,珊瑚生存和招募。
我们报告了从葡萄牙里斯本海洋馆 19 立方米热带展览水族馆中保存的两个 Litophy ton sp. 标本中分离出的四种 Endozoicomonas 菌株的基因组。如前所述 (2) 回收宿主衍生的微生物细胞悬浮液。将一克珊瑚组织在 9 mL 无菌 Ca 2+ - 和 Mg 2+ - 人工海水中均质化 (2)。将匀浆连续稀释,分别接种在 1:2 稀释的海洋琼脂和 1:10 稀释的 R2A 培养基上,并在 21°C 下孵育 4 周。使用 Wizard 基因组 DNA 纯化试剂盒 (Promega, USA) 从 1:2 海洋肉汤中新鲜生长的培养物中提取单个菌落的基因组 DNA。使用通用引物 (F27 和 R1492) 从基因组 DNA 中扩增 16S rRNA 基因,通过 Sanger 测序来确认纯度。使用 SILVA 比对、分类和树服务 (v1.2.12) 和数据库 (v138.1) 进行分类分配。使用 PacBio 测序技术 (5),相同的基因组 DNA 样本在 DOE 联合基因组研究所 (JGI) 进行基因组测序。对于每个样本,将基因组 DNA 剪切至 6-10 kb,使用 SMRTbell Express Template Prep Kit 3.0 进行处理,并用 SMRTbell 清理珠 (PacBio) 进行纯化。使用条形码扩增寡核苷酸 (IDT) 和 SMRTbell gDNA 样本扩增试剂盒 (PacBio) 富集纯化产物。构建了 10 kb PacBio SMRTbell 文库,并使用 HiFi 化学在 PacBio Revio 系统上进行测序。使用 BBTools v.38.86 ( http://bbtools.jgi.doe.gov ) 根据 JGI 标准操作规范 (SOP) 协议 1061 对原始读段进行质量过滤。使用 Flye v2.8.3 (6) 组装过滤后的 >5 kb 读段。生物体和项目元数据存放在 Genomes OnLine 数据库中 (7)。使用 NCBI 原核基因组注释流程 (PGAP v.6.7) (8) 和 DOE-JGI 微生物基因组注释流程 (MGAP v.4) (9) 对重叠群进行注释,并与集成微生物基因组和微生物组系统 v7 (IMG/M) 相结合进行比较分析 (10)。使用 CheckM 评估基因组完整性和污染
我们报告了从葡萄牙里斯本海洋馆 19 立方米热带展览水族馆中保存的两个 Litophy ton sp. 标本中分离出的四种 Endozoicomonas 菌株的基因组。如前所述 (2) 回收宿主衍生的微生物细胞悬浮液。将一克珊瑚组织在 9 mL 无菌 Ca 2+ - 和 Mg 2+ - 人工海水中均质化 (2)。将匀浆连续稀释,分别接种在 1:2 稀释的海洋琼脂和 1:10 稀释的 R2A 培养基上,并在 21°C 下孵育 4 周。使用 Wizard 基因组 DNA 纯化试剂盒 (Promega, USA) 从 1:2 海洋肉汤中新鲜生长的培养物中提取单个菌落的基因组 DNA。使用通用引物 (F27 和 R1492) 从基因组 DNA 中扩增 16S rRNA 基因,通过 Sanger 测序来确认纯度。使用 SILVA 比对、分类和树服务 (v1.2.12) 和数据库 (v138.1) 进行分类分配。使用 PacBio 测序技术 (5),相同的基因组 DNA 样本在 DOE 联合基因组研究所 (JGI) 进行基因组测序。对于每个样本,将基因组 DNA 剪切至 6-10 kb,使用 SMRTbell Express Template Prep Kit 3.0 进行处理,并用 SMRTbell 清理珠 (PacBio) 进行纯化。使用条形码扩增寡核苷酸 (IDT) 和 SMRTbell gDNA 样本扩增试剂盒 (PacBio) 富集纯化产物。构建了 10 kb PacBio SMRTbell 文库,并使用 HiFi 化学在 PacBio Revio 系统上进行测序。使用 BBTools v.38.86 ( http://bbtools.jgi.doe.gov ) 根据 JGI 标准操作规范 (SOP) 协议 1061 对原始读段进行质量过滤。使用 Flye v2.8.3 (6) 组装过滤后的 >5 kb 读段。生物体和项目元数据存放在 Genomes OnLine 数据库中 (7)。使用 NCBI 原核基因组注释流程 (PGAP v.6.7) (8) 和 DOE-JGI 微生物基因组注释流程 (MGAP v.4) (9) 对重叠群进行注释,并与集成微生物基因组和微生物组系统 v7 (IMG/M) 相结合进行比较分析 (10)。使用 CheckM 评估基因组完整性和污染
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2024 年 12 月 20 日发布。;https://doi.org/10.1101/2024.12.17.629048 doi:bioRxiv 预印本
热带珊瑚礁是世界上最多样化和最具生产力的生态系统之一,支持着一系列生态系统产品和服务,为数百万人的福祉做出贡献。然而,由于当地和全球的人为影响,全球珊瑚礁覆盖率正在下降( Wilkinson,1999 )。特别是,全球气候变化导致的大规模白化事件的频率和严重程度预计在未来会进一步增加,并威胁到珊瑚礁的长期生存( Hughes 等人,2017 )。这种海洋生态系统的营养和结构基础依赖于石珊瑚和它们相关的微生物共生体(光合甲藻、细菌、古菌等)之间的互利关系,形成一种称为珊瑚全生物的元生物( Ste ́ venne 等人,2021 )。尽管人们对珊瑚全生物功能的分子基础有了越来越多的了解,但我们的知识仍然存在重大空白。如果我们要充分了解珊瑚宿主与其微生物共生体之间建立和维持相互作用的潜在基本过程,以及珊瑚是否或如何适应环境干扰并生存下来,就必须揭示珊瑚宿主与其微生物共生体之间相互作用的建立和维持的潜在基本过程。模型生物的使用有着成功的记录,并在分子、细胞和发育生物学方面取得了重大进展( Jacobovitz 等人,2023 年)。模型生物 Aiptasia,即 Exaiptasia diaphana,是一种小型海葵,遍布亚热带和热带海洋水域,细胞内寄生着共生的甲藻(科:Symbiodiniaceae)( LaJeunesse 等人,2018 年)。与珊瑚不同,海葵没有碳酸钙骨架,可以在实验室条件下轻松操作和培养,并且可以在兼性共生状态下生存,这允许在非共生对照动物上进行实验(Matthews 等人,2016 年)。自 2008 年正式提出将其作为研究刺胞动物共生的模型系统以来(Weis 等人,2008 年)。越来越多的实验室采用海葵来探索以下研究问题:发育和
软珊瑚珊瑚礁生态系统的作用越来越受海洋温度,海洋酸性和污染的威胁。高温破坏了珊瑚与它们的共生藻类伴侣之间的关系,导致珊瑚漂白,而较低的pH却削弱了珊瑚骨骼,从而危害了它们的生存。石质珊瑚构成了珊瑚礁的结构基础,但软珊瑚(称为八焦)对于生态平衡至关重要,有助于生物多样性,栖息地供应,营养循环和礁石的韧性。
