•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
长期的载人太空探索任务需要环境控制和封闭式生命支持系统 (LSS),该系统能够生产和回收资源,从而满足人类在恶劣的太空环境中生存的所有基本代谢需求,无论是在旅行期间还是在轨道/行星站。随着任务距离地球越来越远,这将变得越来越必要,从而限制了从地球补给资源的技术和经济可行性。需要将生物元素进一步融入最先进的(主要是非生物的)LSS,从而形成生物再生 LSS (BLSS),以实现额外的资源回收、食品生产和废物处理解决方案,并使前往月球和火星的任务更加自给自足。有一整套功能对于维持人类在低地球轨道 (LEO) 的存在以及在月球或火星上成功定居至关重要,例如环境控制、空气再生、废物管理、供水、食品生产、舱室/栖息地增压、辐射防护、能源供应以及交通、通信和娱乐手段。在本文中,我们重点关注空气、水和食品生产以及废物管理,并讨论辐射防护和娱乐的一些方面。我们简要讨论了现有知识,强调了尚未解决的差距,并提出了短期、中期和长期内可能进行的未来实验,以实现载人航天探索的目标,同时也可能给地球带来好处。
出版日期:2025/01/28摘要:十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)是蛋白质分析中的基石技术,可根据其分子量提供精确的蛋白质分离和蛋白质的表征。本综述提供了SDS-PAGE的全面概述,作为Western印迹分析的关键一步,重点讨论了其在营养研究和食品质量评估中的应用。本文强调了SDS-PAGE在识别和量化饮食蛋白,评估蛋白质修饰以及评估各种食品基质中功能蛋白的完整性中的作用。特别强调实验参数的优化,例如凝胶组成,样品制备和电泳条件,以确保在复杂的蛋白质混合物中高分辨率和可重复性。此外,该评论探讨了SDS-PAGE协议中最新的进步,包括提高检测灵敏度和与下游分析的兼容性。通过解决常见的技术挑战并提出最佳实践,这项工作旨在在食品和营养科学的背景下提高SDS-PAGE的可靠性和准确性,为其在蛋白质表征,过敏原检测和质量控制中继续使用铺平道路。关键字:SDS-PAGE;蛋白质表征;分子量分离;食品和营养科学;电泳优化。如何引用:Omogbolahan Samson Idowu; David Oche Idoko; Samuel O. Ogundipe;伊曼纽尔·门萨(Emmanuel Mensah)。(2025)。在营养研究和食品质量评估中优化SDS-PAGE以进行准确的蛋白质表征。国际创新科学与研究技术杂志,第10(1)期,1008-1045。 https://doi.org/10.5281/Zenodo.14744563。
微生物的安全性和质量在食品行业至关重要,构成了公共卫生和消费者信任的骨干。微生物,包括细菌,病毒和真菌,本质上是普遍存在的,在生态系统和人类生活中起着至关重要的作用。但是,当病原或腐败的微生物损害食品安全和质量时,它们在食物中的存在可能会构成重大挑战。微生物安全的复杂性在于微生物的双重性质。一方面,它们对粮食生产做出了积极贡献,例如在发酵过程中。另一方面,它们可能导致食源性疾病,变质和经济损失。这些动力学的交集强调了监测和管理食品系统中微生物存在的综合策略的重要性[1,2]。
©2024 Infosys Limited,印度班加罗尔。保留所有权利。Infosys认为本文档中的信息截至其发布日期是准确的;此类信息如有更改,恕不另行通知。Infosys承认本文档中提到的商标,产品名称和其他知识产权的其他公司的专有权利。除非明确允许,均不能复制,存储在检索系统中,或以任何形式或以任何方式传输,无论是在未经本文档中的Infosys Pressys limited和/或任何命名的知识财产权持有人的事先许可的情况下以电子,机械,印刷,影印,记录或其他方式传输。均不能复制,存储在检索系统中,或以任何形式或以任何方式传输,无论是在未经本文档中的Infosys Pressys limited和/或任何命名的知识财产权持有人的事先许可的情况下以电子,机械,印刷,影印,记录或其他方式传输。
b'Inatruction fermi液体范式(1,2)是现代冷凝物质理论的基石之一,提供了多体系统的有效描述,其基本激发是弱相互作用的费米金准式晶粒。费米液体的理论提供了理解为什么金属中的传导电子基本上是非相互作用的颗粒。费米液体可以以纵向密度振荡的形式支持集体模式,这些振荡与经典流体中的声音类似。它们的传播取决于该模式的角频率\ xcf \ x89是否高于或低于粒子间碰撞速率(3)\ xcf \ x84 1 coll。液体3他是一种中性的费米液体,是第一个从第一个声音模式(\ xcf \ XCF \ x89 \ xcf \ xcf \ x84 1 coll,即在流体动态状态)到零1 col(\ xcf xcf xcf xcf xcf xcf)(\ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ x,观察到Coll,即,在无碰撞状态中)(4)。在具有远距离库仑相互作用的电子费米液体中,其中电子电子(EE)散射时间\ xcf \ x84 EE起着\ xcf \ x84 coll的作用,第一,零声折叠到Plasmon模式(5)。在这种模式下,从'
本论文由 Cornerstone:明尼苏达州立大学曼卡托分校学术与创意作品集的研究生论文、学位论文和其他顶点项目免费提供给您。它已被 Cornerstone:明尼苏达州立大学曼卡托分校学术与创意作品集的授权管理员接受并纳入所有研究生论文、学位论文和其他顶点项目。
负责支持人类在太阳系内持续开展探索任务和行动。NASA 的太空行动任务理事会 (SOMD) 负责管理 NASA 目前和未来在低地球轨道内外的太空行动,包括向国际空间站提供商业发射服务。
建筑在很大程度上被忽视,它不是实现、衡量和报告幸福感结果的杠杆。分类思维——我们倾向于将生活的各个方面归类为易于理解的类别——将我们对环境的定义限制在我们生活、工作和娱乐的建筑中。这实际上在 ESG 的环境和社会部分之间造成了空白,而不是桥梁。在全球范围内,许多公司通过投资可持续建筑认证来应对气候变化。在过去的二十年里,绿色建筑认证,如能源与环境设计领导力和建筑研究机构环境评估方法——仅举两个例子——使组织能够应对建筑对外部气候的影响。许多企业现在专注于打造节能、低碳的建筑。随着我们向净零排放计划过渡,这些努力需要继续并加速。然而,物理工作场所蕴藏着影响人类福祉的巨大机会。
需要大量的创新技术来实现可持续发展目标(SDGS)(Frankl 2020 I)。实现最不可能的可靠和可持续的能源系统是一个全球挑战。可再生能源对于所有能源部门的关键,直到最新世纪中期(到2050年2021年II)才能实现气候中性能源供应。在有利的政策环境,市场机会和大量成本降低的驱动下,可变的可再生能源(VRE)等可变的可再生能源(VRE)等越来越重要的能源是越来越重要的能源来扩展能源访问并基于清洁能源启用电气化。这实质上改变了电力系统的结构和操作,但也影响了热量和运输部门的可再生能源。