癌症干细胞(CSC)与上皮 - 间质转变(EMT)之间的联系对于癌症的起步,进展,转移和耐药性至关重要,这使其成为癌症治疗的焦点。本综述提供了CSC和EMT之间关联和调节途径的全景,强调了它们在癌症中的重要性。彻底探索了下划线EMT的分子机制,包括关键转录因子和信号通路的参与。此外,在本综述中进一步研究了CSC和EMT在肿瘤生物学和耐药性中的作用。探索了CSCS-EMT相互作用的临床意义,包括使用先进的研究方法鉴定间充质状态CSC亚群,并开发了靶向疗法,例如抑制剂和组合治疗。总的来说,了解EMT与CSC之间的相互关系具有巨大的潜力,可以告知个性化疗法的发展并最终改善患者的结果。
量子系统与其环境的相互作用导致量子相干的丧失。通常通过Ancilla,建立良好的储层工程方法调整量子系统与其环境的耦合,可以通过将有效的耗散性动态逐渐发展为量子量子状态或量子状态[1-6],从而克服了有效的耗散动力学来克服脱碳范式。尤其是在电路量子电差异的范围内[7],已经成功利用了储层工程,以自主保护在谐波振荡器的限制希尔伯特空间中编码的量子信息,即玻孔代码,而无需基于测量的反馈。这是通过有效的奇偶校验的工程来实现的,它保留了耗散的演化,该耗散演化将微波谐振器的状态驱动到由相反状态的均匀和奇数相干叠加跨越具有相反位移的歧义的歧管,也称为Schrödinger猫态[8-11]。原则上,这些耗散动态可用于准备猫代码的逻辑状态[9]。尽管如此,这不是必需的,因为使用最佳控制脉冲序列[10],可以使用分散耦合量子轴对微波谐振器场进行通用控制,或者正如最近已证明的那样,已证明,连续变量(CV)通用门集的优化序列[12,13]。因此,为了稳定CAT代码的唯一目的,储层工程是为了唯一的目的。
图 3. 调查投标模式。改编自 S. Zimmermann 的《利用数据和透明度打击公共采购中的腐败》 - 使用 WBG 和国家数据进行数据建模