研究文章:新研究 | 感觉和运动系统 对本体感受和视觉扰动的快速在线校正会在初级运动皮层中招募类似的回路 https://doi.org/10.1523/ENEURO.0083-23.2024 收到日期:2023 年 3 月 11 日 修订日期:2023 年 12 月 22 日 接受日期:2024 年 1 月 9 日 版权所有 © 2024 Cross 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
使得它渐近于信道容量。我们注意到,在许多情况下量子信道容量是未知的,但是任何特定方案都会产生容量的下限。假设通信方在物理上是分开的,但他们可能可以使用其他资源,这些资源可能包括访问经典通信信道、预共享随机性和预共享纠缠。在这里,我们考虑在量子纠错码(QECC)的设计中使用纠缠来提高其通信速率或纠错能力。正如文献中常见的那样,我们关注通信本身,即,我们不包括共享最大纠缠态的过程。同时,必须记住,纠缠是一种不是免费的额外资源。例如,在 [1] 中已经讨论了在有噪声的量子信道上共享最大纠缠态与量子纠错之间的关系。本介绍部分的其余部分介绍了纠缠辅助量子纠错码 (EAQECC) 的一般框架和文献中基于经典纠错码的两种构造。此外,我们总结了主要结果。第 2 节讨论了三种线性代数方法,它们从经典代码开始,并产生具有不同参数的 EAQECC。第 3 节讨论了 EAQECC 参数的上限。随后在第 4 节中将它们集体用作优度度量,以激励我们的计算过程和结果。第 5 节结束语后的表格中列出了所得量子位和量子三元组 EAQECC 的参数。
回应:惩教局(DOC)通过SB 22-196获得了行为和心理健康现金基金的州和地方回收基金(SLFRF)资金的3,000,000美元,以创建多个设施中所需的基础设施,以容纳并提供药物辅助治疗(MAT)计划。The Department's Facility Management Services (FMS) has drawn up the renovation plans for Arrowhead Correctional Center, Arkansas Valley Correctional Facility, Buena Vista Correctional Complex, Denver Women's Correctional Facility, Denver Reception & Diagnostic Center, Fremont Correctional Facility, LaVista Correctional Facility, Limon Correctional Facility, and three locations within Sterling Correctional Facility.项目指令正在为Arrowhead,Arkansas Valley,Fremont,Limon,Lavista以及Sterling的所有三个地点进行处理。临床已经购买了包括Methasoft软件,安全用药窗口,安全摄像头,计算机,打印机,包装设备,分配设备和带有可追溯审计步道的麻醉锁定箱的设备。部门打算在2024年12月之前建造和配备垫子房间。该部门已经能够利用这些基础设施资金来确保资金进行编程。
量子信息从量子的两个计算状态中泄漏到其他能量状态是量子误差校正的主要挑战。在操作错误校正算法期间,泄漏会随着时间的推移而构建,并通过多数相互作用扩散。这会导致相关的误差,从而降低了逻辑误差的指数抑制,从而挑战了量子误差校正的可行性,这是通往耐故障量子计算的路径。在这里,我们在一个量子处理器上演示了一个距离3的表面代码和距离-21位 - 翼型式代码,该量子处理器为每个循环中的所有量子机删除泄漏。这缩短了泄漏的寿命,并削弱了其传播和引起相关错误的能力。我们报告了编码逻辑状态的数据量量量量的稳态泄漏人群的降低,整个设备的平均泄漏群体低于1×10 -3。我们的泄漏清除过程有效地将系统返回到计算基础上。将其添加到代码电路中会防止泄漏诱导跨周期的相关误差。通过这种证明可以包含泄漏的证明,我们已经解决了在大规模上进行实用量子误差校正的关键挑战。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2023 年 11 月 8 日发布了此版本。;https://doi.org/10.1101/2023.11.07.566043 doi:bioRxiv 预印本
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creat iveco mmons. org/licen ses/ by/4. 0/。
镰状细胞疾病(SCD)是一种遗传性血液疾病,这是由于β-珠蛋白基因(HBB)的单点突变导致了多个系统的表现,并且会影响全球数百万的人。疾病的单基质和自体造血干细胞(HSC)的可用性使这种疾病成为基因修饰策略的理想候选者。值得注意的是,在过去的十年中进行的基因疗法和基因组编辑领域的显着进步使得有可能制定多种SCD治疗的策略。这些治疗方法是第一个基于对患者特定,有效且安全的选择有望纠正引起疾病的突变的。,研究了利用指向同源性修复途径的基因编辑方法,但是很快,他们在静止的HSC中有限的效率有限,从而遏制了其更广泛的发展。另一方面,许多关于球蛋白基因调节的研究,导致基于核酸酶介导的HBG抑制剂元素的靶向靶向胎儿γ-蛋白基因(HBG)的重新激活的几种基因组编辑策略。尽管这些策略的效率似乎在临床前和临床研究中得到了证实,但对这些修改的长期后果知之甚少。此外,必须考虑基于核酸酶的策略的潜在遗传毒性,尤其是在与高靶向速率相关时。最近引入无核酸酶基因组编辑技术带来了SCD基因校正策略的潜力,SCD基因校正也可能具有与HBG相比 - 重新激活的策略。在这篇综述中,我们讨论了基因组编辑策略的最新进展,以纠正引起SCD的突变,以试图概括当前可用的有前途的策略及其相对优势和劣势。
与心脏右侧有关的心血管疾病,例如肺部高血压,是墨西哥(和全球)人口中的一些主要死亡原因。为了避免侵入性技术,例如使心脏插入心脏,改善医学超声心动图系统的细分性能可以是早期检测与心脏右侧有关的疾病的一种选择。虽然当前的医学成像系统在心脏的左侧自动进行良好的分割,但他们通常会努力策划右侧腔。本文基于流行的U-NET体系结构,介绍了一种强大的心脏分割算法,能够通过减少的训练数据集准确地分割这四个腔。此外,我们提出了两个其他步骤,以提高机器学习模型中的结果质量,1)一种分割算法,能够准确检测锥形形状(因为已经对其进行了多个数据源进行了培训和完善)和2)2)一个后处理步骤,该步骤可根据SEG的形状和基于SEG-INTICATION的形状和轮廓,该步骤是根据SEG-Intication the Hearicians提供的。我们的结果表明,所提出的技术达到的分割精度可与通常用于此实践的数据集以及我们的医疗团队编制的数据集中的最新方法相媲美。此外,我们在相同的图像序列中测试了后处理校正步骤的有效性,并证明了其与临床医生进行的手动分段的一致性。
引言威尔逊疾病(WD)是由ATP7B基因中的致病变异引起的一种罕见的常染色体隐性代谢疾病,它编码了P型铜转运ATPase,并且主要在HEPATOCYTES中表达。ATP7B在铜代谢中起着至关重要的作用,为铜蛋白合成提供了铜,并将过量的铜释放到胆汁中。ATP7B功能的丧失会导致肝脏中的有毒铜沉积物,并且在较小程度上,在大脑,眼睛和肾脏中导致慢性肝炎和肝硬化,直到肝脏衰竭,并导致精神病和神经系统缺陷。当前的WD疗法基于螯合剂的去除和减少锌盐铜肠吸收的铜沉积物(1)。治疗在所有WD患者中均不有效,无反应者通常需要肝移植(2)。此外,遵守治疗通常是一个问题,尤其是在青少年中(3,4)。腺相关病毒(AAV)载体被认为是肝脏定向基因治疗的首选载体,并且正在迅速进入诊所(5)。使用AAV载体的经典基因替代方法已在成年ATP7B - / - 小鼠(6)中实现了疾病校正。然而,WD可以在年轻人中表现出来,而在生长肝脏中早期施用了伴有肝AAV载体可能会导致由于肝细胞增殖而导致转基因表达的逐渐丧失。此外,大多数WD患者在诊断时已经存在肝损伤(7),再生反应可能会进一步促进转基因稀释。此策略利用相反,基因组编辑会导致永久性基因组DNA修饰,如果发生增殖,则由子细胞遗传,从而避免转基因稀释。AAV介导的无启动子转基因在白蛋白(ALB)基因座中的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法(8)。
简介 威尔逊病 (WD) 是一种罕见的常染色体隐性铜代谢障碍,由 ATP7B 基因的致病变异引起,该基因编码 P 型铜转运 ATPase,主要在肝细胞中表达。ATP7B 在铜代谢中起着关键作用,为铜蛋白合成提供铜,并将过量的铜释放到胆汁中。ATP7B 功能丧失会导致肝脏中出现有毒的铜沉积,在较小程度上还会在脑、眼和肾脏中出现,从而导致慢性肝炎和肝硬化直至肝功能衰竭,以及精神和神经功能障碍。目前对 WD 的治疗方法是通过螯合剂去除铜沉积物和通过锌盐减少肠道对铜的吸收 (1)。这种疗法并非对所有 WD 患者都有效,对治疗无反应的患者通常需要肝移植 (2)。此外,治疗依从性往往是一个问题,尤其是在青少年中 (3, 4)。腺相关病毒 (AAV) 载体被认为是肝脏定向基因治疗的首选载体,并正在迅速进入临床 (5)。使用 AAV 载体的经典基因置换方法已在成年 Atp7b –/– 小鼠中实现了疾病纠正 (6)。然而,WD 可能在年轻个体中表现出来,在生长的肝脏中早期施用游离型 AAV 载体可能会导致由于肝细胞增殖而逐渐丧失转基因表达。此外,大多数 WD 患者在诊断时已经出现肝损伤 (7),再生反应可能会进一步促进转基因稀释。相反,基因组编辑会导致永久性的基因组 DNA 修饰,如果发生增殖,子细胞会继承这些修饰,从而避免转基因稀释。AAV 介导的白蛋白 (Alb) 基因座内无启动子转基因的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法 (8)。该策略利用
