理解非平衡量子动力学的一个有力视角是通过其纠缠内容的时间演化。然而,除了纠缠熵的一些指导原则外,迄今为止,人们对纠缠传播的精细特性知之甚少。在这里,我们从纠缠汉密尔顿量的角度揭示了纠缠演化和信息非平衡传播的特征。我们使用最先进的数值技术结合共形场论研究了原型 Bose-Hubbard 模型的量子猝灭动力学。在达到平衡之前,发现纠缠汉密尔顿量中出现了一个电流算子,这意味着纠缠扩散是由粒子流携带的。在长时间极限下,子系统进入稳定阶段,这可以通过纠缠汉密尔顿量动态收敛到热系综的期望来证明。重要的是,稳定状态下的纠缠温度在空间上是独立的,这提供了平衡的直观特征。这些发现不仅为平衡统计力学如何在多体动力学中出现提供了重要信息,而且为从纠缠哈密顿量的角度探索量子动力学提供了工具。
纠缠熵表征了多颗粒的相关性,并揭示了开放量子系统的关键特征。但是,在非弱者系统中探索纠缠的实验实现面临挑战。并行,量子步道提供了研究非炎性物理学的潜在机制的可能性,其中包括特殊点,非铁皮皮肤效应和非Blloch相变。不幸的是,这些研究仅参与并广泛关注单个粒子的行为。在这里,我们提出并在实验中实现了在工程的非热光子晶格中的两个无法区分的光子的量子步行。我们已经成功地观察到了量子行动的单向行为,远离皮肤效应引起的边缘。此外,我们通过实验揭示了由非铁症系统中皮肤效应引起的纠缠的抑制。我们的研究可能有助于对远离热平衡的开放量子多体系统的纠缠深入了解。
我的博士学位的成功没有一个巨大的支持网络,我最大程度地赞赏和感激之情是不可能的。首先,我要感谢我的顾问罗伯特·麦克德莫特(Robert McDermott)教授,他在整个研究生生涯中指导我进行了几个项目,甚至对最细微的细节似乎无休止地了解了知识。一天,没有一个新想法或尝试测试的新理论。在他的领导下,我从对领域的几乎一无所知,到提出自己的问题并提出自己的理论进行测试。,当我们把他带出实验室时,罗伯特总是有一个有趣的故事来讲述诸如爆炸的低温恒温器或秘密俄罗斯掩体之类的事情。我还要感谢麦克德莫特实验室的其余成员在这些年中的工作和竞争。尤其要感谢Guilhem在我开始时将我带到他的翅膀上,因为他启动了我对Qubits,Ivan和Alex的理解,伊万和亚历克斯帮助我寻求更新实验室的软件基础架构,并为教会我所有关于噪音的教导。没有你们每个人,这里工作就不会一样。我的工作已经建立在实验室中其他每个学生的工作,无论是已经测试过的制造食谱还是低温器的设置和接线,为此,我非常感谢。我很幸运能在一路上有许多导师,这推动了我的物理职业发展。在大学里,有许多教授,学生和研究机会,我非常感谢您维持我对物理学的兴奋。Richardson先生首先让我对我的高中物理课上的物理学奇迹睁开了眼睛,教我们如何通过有趣,有趣的问题工作(几年后我以TA为ta!)。大学毕业后,我在西北国家实验室的Brent Vande-vender指导我。正是这种指导和经验影响了我去研究生并继续研究物理学的决定。当我介绍我物理生涯的这一章时,我对我的家人表示不足。当我还是个孩子的时候,我的父母向我提供了巡回演出和科学实验套件,并尽力回答我所有的“为什么?”我父亲总是非常支持我的想法,并鼓励我的批判性思维。我妈妈反复大喊:“我等不及要参加物理课!”事实证明,她对我对物理的热情是正确的。我的姐姐安娜,我的祖母和我的大家庭也充满了无休止的鼓励和爱。没有我的家人,这一切都是不可能的,我永远感谢他们不断的支持。研究生有时会令人沮丧,累人和令人生畏。我感谢我庞大而充满爱心的朋友网络,这些网络帮助我度过了艰难的时期,并为我的工作生活提供了平衡。对那些与我一起冒险的人,听了我,支持我,和我一起看日落或电影,和我一起玩飞盘,通常让我在这段旅程中保持理智,谢谢。
此预印版的版权持有人本版本发布于2024年5月2日。 https://doi.org/10.1101/2024.04.04.30.24306603 doi:medrxiv Preprint
强关联过渡金属氧化物因其各种奇异现象而广为人知。稀土镍酸盐(如 LaNiO 3)就是一个典型例子,它们的电子、自旋和晶格自由度之间具有紧密的互连。将它们配对成混合异质结构可以进一步增强其特性,从而产生隐藏相和突发现象。一个重要的例子是 LaNiO 3 /LaTiO 3 超晶格,其中已经观察到从 LaTiO 3 到 LaNiO 3 的层间电子转移,从而导致高自旋状态。然而,迄今为止尚未观察到与这种高自旋状态相关的宏观磁序出现。本文利用 μ 子自旋旋转、X 射线吸收和共振非弹性 X 射线散射,直接证明了在 LaNiO 3 /LaTiO 3 界面上出现了具有高磁振子能量和交换相互作用的反铁磁序。由于磁性是纯界面性的,单个 LaNiO 3 /LaTiO 3 界面本质上可以表现为原子级薄的强关联准二维反铁磁体,有可能在先进的自旋电子器件中实现技术应用。此外,其强准二维磁关联、轨道极化平面配体空穴和分层超晶格设计使其电子、磁性和晶格结构类似于超导铜酸盐和镍酸盐的前体态,但具有 S → 1 自旋态。
量子通信通道在随后的使用之间存在相关性的情况下,最近引起了很多关注。最初在经典信息传输的背景下研究了相关的量子渠道,这表明,对于某些相关强度的范围,随后的使用之间的纠缠产生是有益的,可以增强传播信息的量[1]。Interesting features then emerged in the study of quantum memory (or correlated) channels by modeling of rel- evant physical examples, including depolarizing channels [ 2 ], Pauli channels [ 3 – 5 ], dephasing channels [ 6 – 10 ], amplitude damping channels [ 11 ], Gaussian channels [ 12 ], lossy bosonic channels [ 13 , 14 ], spin chains [ 15 ], collision models [ 16 ], and a MicroMaser模型[17](有关具有内存效果的量子通道的最新综述,请参见参考文献[18])。Quantum channels can be characterized completely by means of quantum process tomography [ 19 ], a well- established technique that requires a number of measurement settings (in an entanglement-based scenario or otherwise a number of measurement settings times number of state prepa- rations in a single system scenario) that scales as d 4 , where d is the arbitrary finite dimension of the quantum system which is sent through the communication channel [ 20 – 22 ].最近提出了具有许多测量设置缩放为d 2的较便宜的程序,以检测不需要完整表征的量子通道的特定特性,例如,其纠缠破坏性属性[23]或其非马克维亚角色[24]。量化通道能力
在多个量子位上表现出显着的时间和空间相关性的噪声可能对易于断层的量子计算和量子增强的计量学尤其有害。然而,到目前为止,尚未报道对即使是两数量子系统的噪声环境的完整频谱表征。我们提出并在实验上证明了基于连续控制调制的两量偏角噪声光谱的方案。通过将自旋锁定松弛度的思想与统计动机的稳健估计方法相结合,我们的协议允许同时重建所有单量和两倍的互相关光谱,包括访问其独特的非分类特征。仅采用单一QUIT控制操作和状态训练测量,而不需要纠缠状态的准备或读取两量点的可观察物。我们的实验演示使用了两个与共享的彩色工程噪声源相连的超导码位,但我们的方法可移植到各种dephasing主导的Qubit架构上。通过将量子噪声光谱推向单量环境,我们的工作预示着工程和自然发生的噪声环境中时空相关的特征。
量子信息的频率编码与光纤和集成光子技术相结合,可以显著降低实现全光子量子网络的复杂性和资源要求。这种单光子的频域处理的关键挑战是在一定带宽范围内实现不同频率量子光场之间的相干和选择性相互作用。在这里,我们报告了频域 Hong-Ou-Mandel 干涉,干涉光子与基于芯片的微谐振器产生的光谱不同的光子发生干涉。我们使用四波混频来实现有源“频率分束器”,并实现 0.95 0.02 的干涉可见度。我们的工作确立了四波混频作为频域选择性高保真双光子操作的工具,与集成单光子源相结合,为频率复用光子量子网络提供了基石。
能量流的时间动力学从电子泵设置中从电子自由度到晶格的自由度的时间动力学可能会受到热量瓶颈的存在,从而可以在光学激发的电子状态下保持更长的连贯性。在MGB 2中已经在实验观察到并在理论上进行了描述,该MGB 2(具有Tc≈39K的基于电子的超导体,基于电子 - 音波的超导体。在晶格间相关性中。 这种方法利用了E 2 G热模式的基本对称性,该模式通过两个硼原子的平面外运动进行了表现。 由于热声子通常发生在布里远区域的高对称点,具有特定的晶格位移对称性,因此目前的分析非常笼统,它可以帮助将其他有前途的材料以其他有前途的材料(例如石墨烯,硼乙烯,硝酸硼,黑色磷酸盐,均匀的蛋白质)呈现。在MGB 2中已经在实验观察到并在理论上进行了描述,该MGB 2(具有Tc≈39K的基于电子的超导体,基于电子 - 音波的超导体。在晶格间相关性中。这种方法利用了E 2 G热模式的基本对称性,该模式通过两个硼原子的平面外运动进行了表现。由于热声子通常发生在布里远区域的高对称点,具有特定的晶格位移对称性,因此目前的分析非常笼统,它可以帮助将其他有前途的材料以其他有前途的材料(例如石墨烯,硼乙烯,硝酸硼,黑色磷酸盐,均匀的蛋白质)呈现。
经典 Wnt 信号转导在正常颅面发育中起着多种关键作用,而其失调已知与面部结构性先天缺陷有关。然而,Wnt 信号转导何时以及如何影响表型变异(包括与疾病相关的变异)仍不清楚。一种潜在机制是通过 Wnt 信号转导在早期面部信号中心额鼻外胚层区 (FEZ) 的模式形成及其随后对早期面部形态发生的调节中的作用。例如,Wnt 信号转导可能直接改变 FEZ 中音猬因子 (SHH) 结构域的形状和/或表达幅度。为了验证这个想法,我们使用了编码 Wnt3a 的复制型禽肉瘤逆转录病毒 (RCAS) 来调节其在面部间充质中的表达。然后,我们使用碘对比微计算机断层扫描成像和 3D 几何形态测量法 (3DGM) 量化并比较了处理过的胚胎和未处理过的胚胎在 FEZ 的 SHH 表达域的三维 (3D) 形状以及面部原基和大脑的形态方面的个体发生变化。我们发现,在头部发育的早期阶段,Wnt3a 表达的增加会在结构和信号分析水平之间产生相关的形状变化。此外,改变的 Wnt3a 激活会破坏前脑和其他神经管衍生物之间的整合。这些结果表明,Wnt 信号的激活通过影响前脑和 FEZ 中的 SHH 表达来影响面部形状,并强调了前脑和中面部形态发生之间的密切关系。