显然,描述量子系统中的信息更加微妙,因此,量子信息的热力学也需要进行更彻底的分析[11,12]。这一研究领域的意识到,量子热力学对新一代量子技术的发展产生了深远的影响[13,14]。在这些新兴技术中,特别是量子热机[15-20]和量子信息发动机[21 - 25],又名量子计算机[26]需要全面研究量子信息作为热力学资源。在这种情况下,重要的是要认识到,从von Neumann熵量化的热力学普及量信息中,这并不是要考虑的信息的唯一概念。相反,了解边际编码的信息的分配[27-29],尤其是真正的量子相关性的热力学价值[30 - 32]是有用的。
给定种和关系,完成给出通用 C*-代数 从所有 𝜌 𝑛 中,获取 C* 代数上的状态 𝜌 实现 𝑝(𝑎, 𝑏|𝑥, 𝑦) GNS 构造给出交换算子量子模型。
摘要 —我们考虑两阶段混合协议,将量子资源和经典资源结合起来,以生成由两个独立参与者共享的经典相关性。我们的动机有两个方面。首先,在不久的将来,量子信息处理的规模非常有限,当可用的量子资源不足以完成某些任务时,增强量子方案能力的一种可能方法是引入额外的经典资源。我们分析了这些混合协议的数学结构,并描述了所需量子资源和经典资源数量之间的关系。其次,通信复杂性理论中的一个基本开放问题是描述共享先验量子纠缠相对于共享先验随机性的优势,这仍然是一个开放的问题。事实证明,我们的量子和经典混合协议为这个重要问题提供了新的见解。
我们引入了一个框架来计算开放量子系统动力学中可实现的时间相关性的上限,该上限通过对系统进行重复测量获得。由于这些相关性是由于环境充当内存资源而产生的,因此这些界限是与观察到的统计数据兼容的有效环境最小维度的见证。这些见证来自具有保证渐近收敛的半正定程序层次结构。我们计算涉及量子比特系统和量子比特环境的各种序列的非平凡界限,并将结果与产生相同结果序列的最佳已知量子策略进行比较。我们的结果提供了一种数值上可处理的方法来确定开放量子系统动力学中多时间概率分布的界限,并允许仅通过探测系统来见证有效环境维度。
最近,交替的Twist多层石墨烯(ATMG)已成为Moiré系统家族,它们与扭曲的双层石墨烯共享几种基本特性,并有望在魔术角附近托管类似强的Electron-Electron相互作用。在这里,我们研究了交替的扭曲Quadrilayer石墨烯(ATQG)样品,扭曲角为1.96°和1.52°,它们从1.68°的魔法角度略微去除。在较大的角度,我们才发现仅当ATQG被掺杂而没有超导性的签名时,我们才能发现相关绝缘子的特征,而对于较小的角度,我们找到了超导性的证据,而相关绝缘体的符号则弱化。我们的结果提供了对ATMG相关相的扭曲角依赖性的见解,并阐明了魔术角范围边缘的中间耦合方案中相关性的性质,在魔术角范围的边缘范围内,分散和相互作用的相同顺序相同。
lichen planus(LP)是一种特发性病因的特发性皮肤疾病,可能涉及皮肤,粘膜(尤其是口腔粘膜),头皮,纤维,纤维,脚趾和外生殖器。中,口腔粘膜疾病是最常见的,可能会溃疡性口腔粘膜和严重病例会导致其更容易受到致癌的影响,尤其是在长期的溃疡部位。LP被认为是世界卫生组织(WHO)(1),1%-2%的病例恶性转化为口服鳞状细胞癌,而此过程的详细机制仍然晦涩难懂(2)。涉及皮肤时,通常发生在四肢的内侧或整个身体。典型的皮肤病变以具有清晰边界和慢性病程的多边形或圆形的紫红色或圆形的紫红色表现(1)。尽管LP的病因学和发病机理尚未完全阐明,但许多科学家认为LP主要与免疫系统的失调有关(1),它是T细胞调节的慢性炎症性自身免疫性疾病,全球发生率为0.5%-2.2%(2),大多数在中等女性中,大多数是中等女性。肠道微生物群是人体中最大的微生物群落。肠道微生物群在维持宿主中免疫和神经系统的平衡方面发挥了重要作用,例如病原体的清除,免疫系统的发展以及中枢神经系统的调节(3,4)。然而,肠道菌群的营养不良也可能在LP的发生中起作用(7)。肠道微生物群与宿主的免疫有很密切的联系,宿主的激活状态和遗传易感性可以通过特定的微生物触发或动机(3)。宿主和微生物群之间的平衡破坏会导致自身免疫性疾病,例如Sjogren综合征(4),全身性红斑狼疮(5)和类风湿关节炎(6),通过不同的机制。微生物先前被认为是致病性微生物,通常被认为在LP的启动和进展过程中为微生物提供定殖条件,但不会导致LP的启动和进展。传统的观察研究很容易受到反向因果关系的影响,以产生偏见,无法澄清其因果关系。Mendelian随机化(MR)广泛用于遗传流行病学领域的病因论点(8),这可以克服因混淆和逆向因果问题而产生的偏见。本文两样本MR中的暴露文件和结果文件来自2个不同的同类群体(9)。在这项研究中,我们旨在揭示肠道菌群在遗传水平上与LP通过两样本MR方法开始的相关性,该方法基于全基因组的肠道微生物群和LP的研究数据,以奠定基础,以制定原始早期LP临床预防策略的基础。
目标。脑电图(EEG)是一项广泛使用的技术,用于记录脑部计算机界面(BCI)研究中的大脑活动,其中理解刺激与神经反应之间的编码解码关系是一个基本挑战。最近,与传统的BCI文献相比,在单审论中编码自然刺激的编码越来越兴趣,在该文献中,合成刺激的多试验表现很普遍。虽然已经对脑电图对自然语音的响应进行了广泛的研究,但这种刺激范围的脑电图对自然视频镜头的响应仍未得到充实。方法。我们收集了一个新的EEG数据集,主题被动地观看胶片剪辑,并提取一些与EEG信号在时间上相关的视频功能。但是,我们的分析表明,这些相关性主要是由视频中的摄影削减驱动的。为了避免与剪切相关的混杂,我们构建了另一个带有自然单拍视频的EEG数据集作为刺激,并提出了一组新的基于对象的功能。主要结果。我们证明,在没有射击的情况下,在捕获与脑电图信号的耦合时缺乏鲁棒性,并且提出的基于对象的功能显示出明显更高的相关性。此外,我们表明,与这些提出的特征获得的相关性并非主要由眼动驱动。此外,我们在匹配任务中定量验证了所提出的特征的优越性。意义。最后,我们评估这些提出的特征在多大程度上解释了受试者之间相干刺激反应的方差。这项工作为视频EEG分析的功能设计提供了宝贵的见解,并为视觉注意解码等应用铺平了道路。
摘要:解释非局部量子相关性问题的基础是两个因素之间的紧张关系:一方面,相关性的自然解释是因果关系的表现;另一方面,物理学方面对上述相关性的解释,拒绝适应因果关系前理论概念的最基本特征。在本文中,我主张拒绝这个困境的第一个角,即量子相关性需要因果解释的假设。本文分为两部分。第一部分是破坏性的,它对因果解释非局部量子相关性的事业进行了批判性概述,目的是警告人们不要受到因果关系解释的诱惑,这种解释声称可以“免费”涵盖此类相关性。第二部分是建设性的,它介绍了所谓的结构解释(一种非因果解释,表明被解释项如何体现世界的基本结构),并认为量子相关性可以在信息论方法的量子理论背景下从结构上得到解释。
我们介绍了在广义上下文情景中的一组量子相关集的半限定性放松的层次结构。这构成了一个简单且通用的工具,用于界定量子上下文的大小。为了说明其效用,我们使用它来确定对以前最大违规行为的最大量子违规违规。然后,我们走得更远,并使用它来证明无法用纯净的状态来解释某些制备上下文的相关性,从而表明混合状态是上下文中必不可少的资源。在本文的第二部分中,我们将注意力转移到了一般操作理论中制备上下文相关性的模拟中。我们介绍了模拟制备上下文性的信息成本,该信息成本量化了在古典模型或量子模型中模拟上下文相关性所需的附加(否则禁止)的信息。在这两种情况下,我们都表明,使用我们半限制放松的层次结构的变体可以将模拟成本限制在有效的界限上,并且我们以奇怪的多样化的最简单上下文性场景进行了精确计算。
与同时量身定制的空间和时间特性的超短脉冲合成在多模光子学中打开了新的视野,尤其是当空间自由度由可靠的拓扑结构控制时。当前的方法是在其拓扑电荷和光谱成分之间具有相关性的时空光束的当前方法产生了引人入胜的现象。然而,整形通常仅限于狭窄的拓扑和/或光谱带,极大地限制了可实现的时空动力学的广度。在这里,我们引入了一个用于超宽带脉冲的傅立叶时空塑形器,覆盖了近50%的可见光谱,并带有多种拓扑费用,值高达80。我们的方法不用依靠线性几何形状来依靠传统的光栅,而是采用带有圆形几何形状的衍射阳极,允许将方位相调制赋予带有轨道角动量的光束。我们通过基于高光谱离轴全息图引入一种表征技术来检索时空场。线性拓扑光谱相关性的剪裁能够控制波数据包的几种特性,包括其手性,轨道半径和相互缠绕的螺旋数,而复杂的相关性使我们能够操纵它们的动态。我们的带有宽带拓扑内容的时空束将使超高光激发,显微镜和多重功能中的许多新应用。