使用 7 Tesla fMRI 对人脑的异质-内感受系统进行皮层和皮层下映射 Jiahe Zhang 1 、Danlei Chen 1 、Philip Deming 1 、Tara Srirangarajan 2 、Jordan Theriault 3 、Philip A. Kragel 4 、Ludger Hartley 1 、Kent M. Lee 1 、Kieran McVeigh 1 、Tor D. Wager 5 、Lawrence L. Wald 3 、Ajay B. Satpute 1 、Karen S. Quigley, 1 Susan Whitfield-Gabrieli 1 、Lisa Feldman Barrett 1,3,6 * & Marta Bianciardi 3,7 * 1 东北大学心理学系,马萨诸塞州波士顿 02115 2 斯坦福大学心理学系,加利福尼亚州斯坦福 94305 3 放射学系,Athinoula A. Martinos 中心麻省总医院生物医学成像系,马萨诸塞州波士顿 02139 4 埃默里大学心理学系,佐治亚州亚特兰大 30322 5 达特茅斯学院心理与脑科学系,新罕布什尔州汉诺威 03755 6 麻省总医院精神病学系,马萨诸塞州波士顿 02139 7 哈佛大学睡眠医学部,马萨诸塞州波士顿 *L.F.B.和 M.B.共同担任高级作者。通讯作者:Jiahe Zhang,心理学系,125 Nightingale Hall,东北大学,马萨诸塞州波士顿 02115-5000。电子邮件:j.zhang@northeastern.edu Lisa Feldman Barrett,心理学系,125 Nightingale Hall,东北大学,波士顿,MA 02115-5000。电子邮件:l.barrett@northeastern.edu Marta Bianciardi,放射科,Athinoula A. Martinos 生物医学成像中心,麻省总医院和哈佛医学院,149 号楼,2301 室,13 街,查尔斯顿,MA 02129。电子邮件:martab@mgh.harvard.edu 作者贡献:T.W.、L.W.、A.B.S.、L.F.B.和 M.B.设计研究。J.Z.、D.C.、J. T.、L.H.、K.M.L、K.M.、A.B.S.、K.S.Q.、S.W-G.、L.F.B.和 M.B.进行了研究。J.Z.、D.C.、P.D.、T.S.、L.F.B.和 M.B.分析了数据并撰写了论文。所有作者都阅读并批准了该论文。利益冲突声明:作者声明没有利益冲突。分类:生物科学/神经科学 关键词:内脏运动、内感受、内脏感觉、异质平衡、默认模式网络、显着网络
医疗记录文件用于审查卫生服务的福利覆盖范围由成员特定的福利计划文件和可能需要特定服务覆盖的适用法律确定。可能需要医疗记录文件来评估成员是否符合承保范围的临床标准,但不能保证对所请求的服务的承保范围;请参阅标题为“医疗记录”文档的协议。适用的代码仅供参考,以下程序和/或诊断代码提供了以下列表,并且可能不包含在内。在本策略中列出代码并不意味着代码所描述的服务是涵盖或未覆盖的健康服务。卫生服务的福利覆盖范围由成员特定的福利计划文件和可能需要特定服务覆盖的适用法律确定。纳入代码并不意味着要偿还或保证索赔付款的任何权利。其他政策和准则可能适用。
目的:伽马同步是大脑皮层的一个基本功能特性,在多种神经精神疾病(如精神分裂症、阿尔茨海默病、中风等)中会受损。伽马范围内的听觉刺激可以驱动整个皮质层的伽马同步,并评估维持它的机制的效率。由于伽马同步在很大程度上取决于小清蛋白阳性中间神经元和锥体神经元之间的相互作用,我们假设皮质厚度和伽马同步之间存在关联。为了验证这一假设,我们采用了脑磁图 (MEG) - 磁共振成像 (MRI) 联合研究。方法:根据解剖 MRI 扫描估计皮质厚度。与 40 Hz 调幅音调曝光相关的 MEG 测量值被投射到皮质表面。我们考虑了两种皮质同步性测量方法:(a)40 Hz 下的试验间相位一致性,提供伽马同步的顶点估计值;(b)初级听觉皮质与整个皮质套层之间的相位锁定值,提供长距离皮质同步性的测量。然后计算了 72 次 MRI-MEG 扫描的皮质厚度与同步性测量结果之间的相关性。结果:试验间相位一致性和相位锁定值均与皮质厚度呈显著的正相关。对于试验间相位一致性,在颞叶和额叶发现了强关联的簇,尤其是在双侧听觉皮质和运动前皮质中。相位锁定值越高,额叶、颞叶、枕叶和顶叶的皮质厚度就越厚。讨论和结论:在健康受试者中,较厚的皮质对应于初级听觉皮质及其他部位的较高伽马同步和连接性,这可能反映了参与伽马回路的潜在细胞密度。这一结果暗示伽马同步与潜在大脑结构一起参与了高级认知功能的大脑区域。这项研究有助于理解固有的皮质功能和大脑结构特性,这反过来可能构成定义伽马同步异常患者的有用生物标志物的基础。
在最初的分类中(Barkovich 等人,1996 年),研究人员根据受影响的最早发育阶段将疾病分为三大类(认识到早期发育事件的改变通常也会影响后期发育):由异常细胞增殖、异常神经元迁移和异常迁移后皮质发育引起的疾病。然而,随着这些步骤中涉及的许多基因、蛋白质和途径的发现,分类在某些方面变得更加复杂,而在其他方面则更加简单。在本综述中,我们将首先讨论分类中每个主要组成部分的基本概念,然后(在适当的时候)讨论有关基因突变的新发现、这些突变对其蛋白质产物功能的影响、对分子途径的后续影响以及途径的改变如何影响大脑发育。在新发现很少、因而理解不够的领域,我们将讨论理解不够的潜在原因。
为了了解听觉皮层处理过程,我们在 171 名人类连接组计划参与者中测量了 15 个听觉皮层区域和 360 个皮层区域之间的有效连接,并辅以功能连接和扩散纤维束成像。1. 确定了听觉皮层处理的层次结构,从核心区域(包括 A1)到带区 LBelt、MBelt 和 52;然后到 PBelt;然后到 HCP A4。2. A4 与前颞叶 TA2 和 HCP A5 相连,后者连接到背侧颞上沟 (STS) 区域 STGa、STSda 和 STSdp。这些 STS 区域还接收有关移动面部和物体的视觉输入,这些信息与听觉信息相结合,有助于实现多模态物体识别,例如谁在说话以及说了什么。与此“什么”腹侧听觉流一致,这些 STS 区域随后与 TPOJ1、STV、PSL、TGv、TGd 和 PGi 具有有效连接,这些区域是与布罗卡区(尤其是 BA45)连接的语言相关语义区域。3. A4 和 A5 还与 MT 和 MST 具有有效连接,后者连接到顶叶上部区域,形成与空间动作有关的背侧听觉“哪里”流。PBelt、A4 和 A5 与 BA44 的连接可能形成与语言相关的背侧流。
摘要在成年人中,视听语音的整合与对单性刺激的响应相比,具有特定的更高(超源)或较低(次级)皮质反应。有证据表明,在婴儿期的视听语音感知期间,额快的净工作是活跃的,但对音频视觉整合的额叶响应的发展仍然未知。在当前的研究中,5个月大的孩子和10个月大的人观看了双峰(视听)和交替的单峰(听觉 +视觉)音节。在这种情况下,我们使用交替的单形式表示成人视为单独的音节的交替听觉和视觉音节。使用FNIRS,我们测量了在大型皮质区域的反应,包括下额叶和上等颞区。我们鉴定出与单峰条件和使用多变量模式分析(MVPA)的交替响应不同的通道,以解释对双峰(视听)(视听)的皮质反应的PAT terns和交替的单峰(听觉 +视觉)语音。结果表明,在两个年龄组中,整合都会引起与额颞皮质中超级和亚添加反应一致的皮质反应。单变量分析表明,这些响应的空间分布在5到10个月之间变得越来越多。MVPA在5个月时正确分类的响应,其键输入位于右半球的下额叶和上等颞通道中。然而,MVPA分类在10个月时并未成功,这表明在这个时代,可能对视听语音感知进行了皮质重新组织。这些结果表明,在婴儿期一致性视听语音整合的皮质反应的复杂和非毕业生发展。
实验神经科学技术正在迅速发展,高密度电生理学和靶向电刺激方面取得了重大进展。结合这些技术,源自多能干细胞的皮质类器官有望成为大脑发育和功能的体外模型。尽管感觉输入对体内神经发育至关重要,但很少有研究探讨有意义的输入对体外神经培养物随时间的影响。在这项工作中,我们展示了脑类器官中目标导向学习的第一个例子。我们开发了一个闭环电生理学框架,将小鼠皮质类器官融入模拟动态任务(称为“Cartpole”的倒立摆问题)并通过高频训练信号评估学习。该框架支持的纵向实验阐明了选择训练信号的不同方法如何能够提高任务的效率。我们发现,对于大多数类器官,通过人工强化学习选择的训练信号比随机选择的训练信号或没有训练信号在任务上的表现更好。这种研究体外学习机制的系统方法为治疗干预和生物计算开辟了新的可能性。
要点 • 灵长类动物的大脑包含面部细胞、面部区域,它们连接到面部处理网络中。 • 经过数千万年的进化,灵长类动物的面部处理系统惊人地相似。 • 面部包含大量需要提取的社会信息,从检测面部的存在开始,到识别熟悉个体的面部。 • 面部细胞表现出可以解释面部感知主要特性的特性。 • 面部处理障碍(无论是由于发育因素还是通过脑损伤获得)对面部处理回路的功能组织和面部处理的神经机制具有重要意义。 • 面部形状信息可以与其他信息源(甚至是非视觉信息)集成,以帮助处理动态人物信息。 • 面部处理的一个主要目标是识别熟悉的个体,并且已经确定了支持这种社会感知和记忆之间联系的主要神经系统和机制。
使用7个Tesla fmri Jiahe Zhang 1,Danlei Chen 1,Philip Deming 1,Tara Srirrirangarajan 2,Jordan Theriault 3,Philip A. Kragel 4,Ludger Hartley 1,KIRE 1,KIRE kiere W.劳伦斯·L·瓦尔德(Lawrence L.马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州的马提尼斯生物医学成像中心,马萨诸塞州02139 4心理学系,埃默里大学,亚特兰大,佐治亚州亚特兰大,30322 5心理与脑科学系,达特茅斯学院,达特茅斯学院,汉诺威,汉诺威,NH 03755 603755 6 603755 6 60 36 *L.F.B。和M.B.分享高级作者身份。相应的作者:马萨诸塞州波士顿的东北大学夜莺大厅125 Hallingale Hall,马萨诸塞州02115-5000的Jiahe Zhang。电子邮件:j.zhang@northeastern.edu Lisa Feldman Barrett,心理学系,马萨诸塞州波士顿东北大学夜莺大厅125号,马萨诸塞州02115-5000。电子邮件:l.barrett@northeastern.edu marta bianciardi,放射科,Athinoula A. Martinos生物医学成像中心,马萨诸塞州综合医院和哈佛医学院,第149号建筑物,第2301室,Charlestown街13号,马萨诸塞州Charlestown,MA 02129。电子邮件:martab@mgh.harvard.edu作者贡献:T.W.,L.W.,A.B.S.,L.F.B。和M.B.设计的研究。J.Z.,D.C.,J.T.,L.H.,K.M.L,K.M.,A.B.S.,K.S.Q.,S.W-G.,L.F.B. 和M.B. 进行了研究。 J.Z.,D.C.,P.D.,T.S.,L.F.B。 和M.B. 分析了数据并撰写了论文。 所有作者都阅读并批准了论文。 竞争利益声明:作者声明没有利益冲突。 分类:生物科学/神经科学关键词:内脏运动,互感,内脏感,Allostasis,默认模式网络,显着网络J.Z.,D.C.,J.T.,L.H.,K.M.L,K.M.,A.B.S.,K.S.Q.,S.W-G.,L.F.B.和M.B.进行了研究。J.Z.,D.C.,P.D.,T.S.,L.F.B。 和M.B. 分析了数据并撰写了论文。 所有作者都阅读并批准了论文。 竞争利益声明:作者声明没有利益冲突。 分类:生物科学/神经科学关键词:内脏运动,互感,内脏感,Allostasis,默认模式网络,显着网络J.Z.,D.C.,P.D.,T.S.,L.F.B。和M.B.分析了数据并撰写了论文。所有作者都阅读并批准了论文。竞争利益声明:作者声明没有利益冲突。分类:生物科学/神经科学关键词:内脏运动,互感,内脏感,Allostasis,默认模式网络,显着网络