16S rRNA基因的V1-V2区域有效地分化了Rickettsia Africae和Rickettsia Aeschlimannii与其他立克物种,以及Coxiella insosymbionts与Coxiella burnetii。相反,这些物种的V3-V4区域序列无法明确区分。coxiella内共生体在AM中最常见。Gemma和Rh。pulchellus,而弗朗西斯拉内共生体则占主导地位;两者都主要定位在唾液腺中。高丰富的Coxiella内共生体和假单胞菌与两者中的Rickettsia病原体的缺失或低丰度有关。Gemma和Rh。pulchellus,提示这些微生物之间的竞争相互作用。此外,除了唾液腺外,proteus mirabilis是人类泌尿道的机会性病原体,主要是在透明质的壁虱中,除唾液腺外,唾液腺中最丰富。此外,我们在所有tick组织中检测到了杆菌,假单胞菌和corynebacterium属,这支持了这些细菌可能在骆驼血和壁虱之间循环的假设。唾液和血淋巴通常比唾液腺和中肠含有更多的细胞外细菌。
does not cross-react with the below pathogens: SARS-Cov, MERS-COV, Human Coronaviruses (HCOV-229E, HCOV-OC43, HCOV-NL63, HCOV- HKU1), Adenovirus, Influenza, PARAINFLUENZA 1, ParainFluenza 1, Parainfluenza 2, Parainfluenza 3, Parechovirus, Candida albicans, Legionella non-Pneumophila, Bacillus, Moraxella catarrhalis, Neisseria removed, Neisseria Meningitides, RSV A, RSV B, Rhinovirus, Pseudomonas aeruginosa, Staphylococcus, Streptococcus Leptospirosis, Coxiella burnetii (q- fegetii (q- fegetii(q- fegetii(Q- fegetii(Q-发烧),葡萄球菌表皮,肠病毒,嗜血杆菌,bordetella parapertusis,bordetella parapertusis,bordetella parapertusis,borcoplasmoniae pneumoniae,chamemydia pneumoniae pneumydia pneumydia pneumoniaiaiaiaiae beypeionelly perimopliation sepatis hepatity hepat hepat hepat hepat hepat hepat hepat; Hepatitis Delta, human immunodeficiency virus, cytomegalovirus, Epstein-Barr virus, JCV, BKV, Human Papilloma, Parvovirus, herpes simple virus, Mycobacterium tuberculosis, Aspergillus spp., Brucella abortus, Brucella, E.Coli O157, Salmonella spp., Listeria monocytogenes div>does not cross-react with the below pathogens: SARS-Cov, MERS-COV, Human Coronaviruses (HCOV-229E, HCOV-OC43, HCOV-NL63, HCOV- HKU1), Adenovirus, Influenza, PARAINFLUENZA 1, ParainFluenza 1, Parainfluenza 2, Parainfluenza 3, Parechovirus, Candida albicans, Legionella non-Pneumophila, Bacillus, Moraxella catarrhalis, Neisseria removed, Neisseria Meningitides, RSV A, RSV B, Rhinovirus, Pseudomonas aeruginosa, Staphylococcus, Streptococcus Leptospirosis, Coxiella burnetii (q- fegetii (q- fegetii(q- fegetii(Q- fegetii(Q-发烧),葡萄球菌表皮,肠病毒,嗜血杆菌,bordetella parapertusis,bordetella parapertusis,bordetella parapertusis,borcoplasmoniae pneumoniae,chamemydia pneumoniae pneumydia pneumydia pneumoniaiaiaiaiae beypeionelly perimopliation sepatis hepatity hepat hepat hepat hepat hepat hepat hepat; Hepatitis Delta, human immunodeficiency virus, cytomegalovirus, Epstein-Barr virus, JCV, BKV, Human Papilloma, Parvovirus, herpes simple virus, Mycobacterium tuberculosis, Aspergillus spp., Brucella abortus, Brucella, E.Coli O157, Salmonella spp., Listeria monocytogenes div>
摘要:当存在有毒水平时,许多金属对生命至关重要,对人类,动物,植物和微生物有害。土壤中重金属的发生主要归因于工业,采矿和农业活动。这项研究的重点是将土壤微生物种群与重金属污染的土壤中分离,并确定重金属对从金属行业地点收集的细菌种群的最低抑制浓度(MIC)。土壤中的重金属污染构成了重大的环境挑战。研究中确定的微生物群落包括两组:重金属耐药和敏感人群。抗性微生物分离株包括假单胞菌,芽孢杆菌,小杆菌和微球菌等物种。在土壤培养基中评估了分离株的MIC,以评估镉(CD),铬(CR),镍(Ni)和铅(Pb)等金属。孤立的重金属细菌可能有效,可用于重金属污染土壤的生物修复。关键字: - 被污染的土壤,重金属,生物修复,土壤微生物。
摘要:背景:肠易激综合征(IBS)是影响患者生活方式的常见疾病。它与肠道微生物组组成的显着变化有关,但是潜在的微生物机制仍有待完全了解。我们研究了便秘的IBS(IBS-C)和混合型IBS(IBS-M)患者的粪便微生物组。方法:我们在离子Torrent PGM测序平台上对16S rRNA的V3区进行了测序,以研究微生物组。结果:与健康组相比,在IBS-C和IBS-M患者中,发现α多样性的增加,并且还指出了β多样性的差异。在门水平上,两种IBS亚型均显示出企业/杀菌素比的增加,并且肌动杆菌和verrucomicrobobiota的丰度增加。Changes in some types of bacteria were characteristic of only one of the IBS subtypes, while no statistically significant differences in the composition of the microbiome were detected between IBS-C and IBS- M. Conclusions: This study was the first to demonstrate the association of Turicibacter sanguinis , Mitsuokella jalaludinii , Erysipelotrichaceae UCG-003 ,塞内加马群岛厌氧菌,Corynebacterium jeikeium,Bacteroides Faecichinchillae,Leuconostoc carnosum和parabacteroides Merdae具有IBS亚型。
早期的营养补充可以显着改善鸽子的健康。父母鸽子的营养作物和肠道的肠道发育在乌贼的生长速度中起着关键作用。茶多酚(TPS)作为天然植物提取物,表现出潜在的生物学活性。然而,TPS对小群的肠道功能的影响尚不清楚。这项研究评估了TPS对小争吵中生长性能,免疫力,抗氧化和肠功能的影响。总共将432只年轻鸽子(1天大)分为四组:对照组(喂养基本饮食)和三个治疗组(低剂量,中和高剂量组; 100、200和400 mg/kg TPS)。在第28天,收集了血清,粘膜组织的样品,粘膜组织和杂物的摘要,以进行分析。结果表明,补充TP显着降低了饲料与肉比的比率,并提高了饲料利用率和血清生化指数。此外,它通过促进紧密连接的肠道发展和完整性并调节消化酶活性和肠道肠道,从而增强了鸟类的肠道屏障功能。从机械上讲,TPS激活了NRF2-是信号传导途径,这可能与改善的抗氧化剂和免疫反应有关,与卵巢中的念珠菌性关节炎和corynebacterium的丰度相关。
l-赖氨酸,对于人类和动物营养而言,必不可少的氨基酸至关重要,在动物饲料中是一种有价值的药物和添加剂。尼日利亚每年都会进口大量的L-赖氨酸来支持其动物饲料行业。在像尼日利亚这样的发展中国家中,一种可行的生物技术生产方法涉及固态发酵。这种方法不仅具有环境优势,而且还促进了同时生产有益的饲料酶。关键词:L-赖氨酸,固态发酵,尼日利亚市场,谷氨酰胺。引言植物蛋白通常缺乏至少一种必需的氨基酸,其中谷物缺乏赖氨酸,而缺乏蛋氨酸和半胱氨酸的豆类谷物,均含有硫氨基酸(Eruvbetine,2009年)。l-赖氨酸是一种必不可少的氨基酸对动物和人类营养至关重要的氨基酸,通常在饲料中补充以补偿这些缺陷,尤其是在食品和动物饲料领域。在2021年,生产了约220万吨的L-赖氨酸。
本文是Gilroy R,Ravi A,Getino M,Pursley I,Horton DL等人的后续作品。peerj 2021; 9:e10941,详细介绍了文化收藏中的登录号,以确保33种新物种的名称符合《国际命名法》的规则,该规则是有效出版文化物种名称所需的原核生物规则。现在建议以下物种名称被认为是有效发表的:卵石杆菌sp。nov。,节肢动物Gallicola sp。nov。NOV。,诺维奇西斯杆菌 NOV。,Brevibacterium Gallinarum sp。 nov。,brevundimonas guildfordensis sp。 nov。,cellulomonas avistercoris sp。 nov。 nov。,comamonas avium sp。 NOV。,Corynebacterium Gallinarum sp。 nov。,cytobacillus stercorigallinarum sp。 nov。,Escherichia whittamii sp。 nov。,kaistella pullorum sp。 nov。,luteimonas colneyensis sp。 NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,诺维奇西斯杆菌NOV。,Brevibacterium Gallinarum sp。 nov。,brevundimonas guildfordensis sp。 nov。,cellulomonas avistercoris sp。 nov。 nov。,comamonas avium sp。 NOV。,Corynebacterium Gallinarum sp。 nov。,cytobacillus stercorigallinarum sp。 nov。,Escherichia whittamii sp。 nov。,kaistella pullorum sp。 nov。,luteimonas colneyensis sp。 NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Brevibacterium Gallinarum sp。nov。,brevundimonas guildfordensis sp。nov。,cellulomonas avistercoris sp。nov。nov。,comamonas avium sp。NOV。,Corynebacterium Gallinarum sp。 nov。,cytobacillus stercorigallinarum sp。 nov。,Escherichia whittamii sp。 nov。,kaistella pullorum sp。 nov。,luteimonas colneyensis sp。 NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Corynebacterium Gallinarum sp。nov。,cytobacillus stercorigallinarum sp。nov。,Escherichia whittamii sp。nov。,kaistella pullorum sp。nov。,luteimonas colneyensis sp。NOV。,微区公社。 11月,gallinarum sp。 NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,微区公社。11月,gallinarum sp。NOV。,微分细菌sp。 NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,微分细菌sp。NOV。 nov。,ochrobactrum gallinarum sp。 NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。nov。,ochrobactrum gallinarum sp。NOV。,Oerskovia Douganii sp。 NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Oerskovia Douganii sp。NOV。,Oerskovia Gallyi sp。 11月,Oerskovia Merdavium sp。 11月,Oersko-通过Rustica sp。 NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Oerskovia Gallyi sp。11月,Oerskovia Merdavium sp。11月,Oersko-通过Rustica sp。NOV。,Paenibacillus Gallinarum sp。 11月,Phocaeicola Gallinarum sp。 nov。 nov。 11月,Serpens Gallinarum sp。 nov。,solibacillus粪便sp。 nov。NOV。,Paenibacillus Gallinarum sp。11月,Phocaeicola Gallinarum sp。nov。nov。11月,Serpens Gallinarum sp。nov。,solibacillus粪便sp。nov。11月,Gallician Sporing sp。 11月,sporing Quadrami sp。 nov。,stenothopomomas pennii sp。 nov。和Urbann可以。11月,Gallician Sporing sp。11月,sporing Quadrami sp。 nov。,stenothopomomas pennii sp。 nov。和Urbann可以。11月,sporing Quadrami sp。nov。,stenothopomomas pennii sp。nov。和Urbann可以。
乳酸菌 (LAB) 又称乳酸杆菌目,属于革兰氏阳性菌目,具有耐酸性、发酵性强、不呼吸、不产孢的特点,呈杆状/或球形。它们喜欢厌氧条件,缺乏细胞色素。它们通常产生乳酸,本质上不产孢,并且不会移动。乳酸菌具有将碳水化合物发酵成乳酸的能力,这种特性在食品工业中得到了广泛的利用。气球菌、链球菌、乳酸菌、肠球菌、小球菌、乳酸杆菌、棒状杆菌和迷走球菌是适应在各种环境条件下生长的乳酸菌种的几个例子。它们可以在某些植物表面、土壤、乳制品、贝类和某些动物消化道中发现(Gatesoupe,1998 年)。尽管乳酸菌并不构成正常肠道微生物群中大多数物种,但人们已经进行了大量努力来人为地提高它们的优势地位(Verschuere 等人,2000 年)。根据它们分解碳水化合物的方式,乳酸菌分为两组。同型发酵组使用 Embden-Meyerhof-Parnas(糖酵解)途径将碳源主要转化为乳酸。通过使用磷酸酮醇酶
摘要:尽管青光眼是全球不可逆性失明的主要原因,但其发病机理尚不完全理解,而眼内压(IOP)是靶向这种疾病的唯一可修改的危险因素。已经提出了包括IOP在内的肠道微生物组和青光眼之间的几个关联。越来越多的证据表明,在眼表面上的微生物之间的相互作用称为眼表面微生物组(OSM)和泪液蛋白质(统称为泪液蛋白质组),也可能在诸如青光眼等眼疾病中起作用。这项研究旨在在青光眼患者中找到OSM和撕裂蛋白的特征。32个结膜拭子的全元基因组shot弹枪测序鉴定出肌动杆菌,富公司和蛋白质细菌是同类中的主要门。该物种仅在健康对照中发现,与青光眼患者相比,它们的结膜微生物组可能富含磷脂酶途径的基因。尽管OSM在OSM中存在较小的差异,但与对照组相比,患者表现出与免疫系统相关的许多撕裂蛋白的富集。与OSM相反,这强调了蛋白质组的作用,并可能引起免疫过程在青光眼中的参与。这些发现可能有助于设计针对青光眼和其他相关疾病的新治疗方法。
从历史上看,微生物相关疾病的研究主要集中在病原体上,在科赫的假设的指导下。这种以病原体为中心的观点为疾病病因和微生物发病机理提供了机械理解。然而,下一代测序方法揭示了各种微生物在疾病中所扮演的角色的看法要细微得多,这突出了除个体病原体以外的微生物多样性的重要性。这种更广泛的观点承认宿主和微生物群落在疾病发展和抵抗中的作用。尤其是,营养不良的概念,尤其是在口腔内,引起了人们的注意,以解释复杂多数疾病的出现。这些疾病通常源自居民微生物而不是外来病原体,使他们的治疗变得复杂,甚至蒙上了我们对疾病病因的理解。口腔健康是通过共生微生物和宿主之间微妙的平衡来维持的,诸如龋齿和牙周疾病之类的疾病是由这种平衡的致病性扰动引起的。共生微生物,例如某些链球菌和corynebacterium spp。,通过涉及过氧化氢和膜囊泡分泌的机制来维持口腔健康,从而扮演着至关重要的作用,这些机制可以抑制致病物质并调节宿主免疫反应。最近的研究重点是分子共度主义的机制,扩大了我们对共生微生物组的这些关键功能的理解,证明了它们在促进口腔健康和预防疾病方面的核心作用。这些能力代表了针对预防疾病和管理的潜在创新策略的很大程度上未开发的储层,强调需要加强固有地抑制发病机理的共生微生物组。