连续过程再生方法首先用于计算再生过程的谱密度。该方法的主要特点是保留“锯齿状”实现中给出的转折点(极值)的值和序列。这样做的同时,基于循环计数方法的方法将给出完全相同的疲劳耐久性估计,因为保证了初始条件 MAX-MIN-MAX ...。为了通过谱密度研究随机过程标准偏差 (RMS),通过连续余弦函数提供原始序列的外推。转折点处的兼容性条件确保了过程及其一阶导数的连续性。为了确定频率,采用了从开发中获得的一些样本实现中的信息。作为应用之一,该方法旨在用于分析耐久性评估任务中两种相互竞争的载荷评估方法的可比性,即应用循环计数方法和基于过程谱密度方法的方法。对建模过程进行了一些其他推测。关键词:材料疲劳、耐久性估计、余弦外推、循环计数、谱密度
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,dirac-delta函数,laplace的周期性函数,周期性拉普拉斯转换,互惠变换,卷积变换,互惠定理,solude for solve lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areviations lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。
详细课程大纲 第一单元:变换微积分拉普拉斯变换:拉普拉斯变换、性质、逆、卷积、用拉普拉斯变换求某些特殊积分、初值问题的解。傅里叶级数:周期函数、函数的傅里叶级数表示、半程级数、正弦和余弦级数、傅里叶积分公式、帕塞瓦尔恒等式。傅里叶变换:傅里叶变换、傅里叶正弦和余弦变换。线性、缩放、频移和时移性质。傅里叶变换的自互易性、卷积定理。应用于边界值问题。第二单元:数值方法近似和舍入误差、截断误差和泰勒级数。插值 - 牛顿前向、后向、拉格朗日除差。数值积分 - 梯形、辛普森 1/3。通过二分法、迭代法、牛顿-拉夫森法、雷古拉-法尔西法确定多项式和超越方程的根。通过高斯消元法和高斯-西德尔迭代法求解线性联立线性代数方程。曲线拟合-线性和非线性回归分析。通过欧拉法、修正欧拉法、龙格-库塔法和预测-校正法求解初值问题。
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,diracdelta函数,laplace的周期性函数,周期性的拉普拉斯转换,逆向拉普拉斯变换,卷积变换,卷积定理,应用程序lineal linear lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areve lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,dirac-delta函数,laplace的周期性函数,周期性拉普拉斯转换,互惠变换,卷积变换,互惠定理,solude for solve lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areviations lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。模块4:数值差异和集成和解决方案:(8小时)
part-B:使用Scilab/Matlab/simulink或LabView1。模拟NRZ,RZ,半鼻涕和凸起的余弦脉冲,并生成二进制极性信号传导的眼图。2。模拟脉冲代码调制和解调系统,并显示波形。3。模拟QPSK发射器和接收器。绘制信号及其星座图。4。通过模拟二进制DPSK的非连锁检测来测试二进制差分相移键系统的性能。
风速计专为测量风资源而设计,用于评估报告和功率曲线。该传感器的特点是与余弦线的偏差最小,即使在高度强烈的湍流下也能实现优化的动态行为,超速最小,起始值低,斜流入行为优化。由于其低惯性和滚珠轴承杯星,它只需要很少的维护。对于冬季运行,电子调节加热可确保滚珠轴承平稳运行并防止轴和槽结冰。
本研究解决了雇主在筛选大量工作职位简历方面面临的困难。我们旨在通过自动化恢复筛选过程来确保对候选人的公平评估,降低偏见并提高候选评估过程的效率。拟议的系统使用NLP技术从简历中提取相关能力,重点关注特定职位所需的关键技能。使用了为职位所采用的能力集。进行了123个工作职位的案例研究。jaccard的相似性和余弦相似性度量。由于余弦相似性着重于单词频率,Jaccard相似性度量的结果与研究目的更加一致。提取的能力与使用JACCARD相似性相关的各种职位相关的预定义技能匹配。此方法通过分析与所需能力有关的简历中的存在或不存在特定单词来分配候选人的相似性分数。这个基于NLP的系统提供了巨大的好处,例如节省时间和其他资源,增加候选人选择方面的能力以及仅通过专注于能力来减少偏见。系统与LinkedIn的集成通过促进无缝进口和简历分析来增强方法的有效性。总体而言,这项研究通过为大型组织提供可扩展,高效和无偏见的解决方案来证明NLP在优化简历筛选过程中的潜力。
摘要 — 机器学习模型在对未知数据集进行推理时,通常会对熟悉的组或相似的类集产生有偏差的输出。人们已经研究了神经网络的泛化以解决偏差,这也表明准确度和性能指标(例如精确度和召回率)有所提高,并改进了数据集的验证集。测试和验证集中包含的数据分布和实例在提高神经网络的泛化方面起着重要作用。为了生成无偏的 AI 模型,不仅应对其进行训练以实现高精度并尽量减少误报。目标应该是在计算权重时防止一个类/特征对另一个类/特征占主导地位。本文使用选择性得分和余弦相似度等指标研究了 AI 模型上最先进的对象检测/分类。我们专注于车辆边缘场景的感知任务,这些任务通常包括协作任务和基于权重的模型更新。分析是使用包括数据多样性差异、输入类的视点和组合的案例进行的。我们的结果表明,使用余弦相似度、选择性得分和不变性来衡量训练偏差具有潜力,这为开发未来车辆边缘服务的无偏 AI 模型提供了启示。索引术语 — 偏差、数据多样性、特征相似度、泛化、选择性得分