大学物理科学学院行星科学和天文学中心肯特,坎特伯雷,肯特 CT2 7NH,英国 b 莱斯特大学物理与天文学院空间研究中心,LE1 7RH,英国 c ESTEC,Keplerlaan 1,PO Box 299,NL-2200 AG 诺德维克,荷兰 d 国家天体物理研究所(INAF)空间天体物理与行星学研究所(IAPS),via Fosso del Cavaliere 100,00133 Roma,意大利 e 伦敦帝国理工学院皇家矿业学院地球科学与工程系,Prince Consort Road,南肯辛顿,伦敦 SW7 2BP,英国 f 马克斯普朗克太阳系统研究所,Justus-von-Liebig-Weg 3,D-37077 Go¨ttingen,德国 g 柏林自由大学地质科学研究所,柏林,德国 h 奥卢大学, 90014 Oulu, PO Box 3000, 芬兰 i 斯图加特大学,Raumfahrtsysteme Raumfahrtsysteme Raumfahrtzentrum Baden Württemberg, Pfaffenwaldring 29, 70569 Stuttgart, 德国 j Klaus-Tschira-Labor fur 化学化学, Institut fu海德堡大学地理科学中心,69120 海德堡,德国 k 苏黎世联邦理工学院,粒子物理和天体物理研究所,Wolfgang-Paulistrasse-27,CH-8093 苏黎世,瑞士
摘要似乎很明显,社会正义的利益应始终与有限地球上的环境正义保持一致。不幸的是,即使在人类世,这在实践中也是如此。本文提供了一个新的认知映射,以表明意识形态上充电的过程如何分裂人和星球的兴趣。它对行星保护的争论如何将其变成宽广的社会不平等现象(以及倒数)提供了务实,语义和空间分析。因此,它提出了对整体理论的隐性批评。努力展示社会的基本统一和环境风险,整体思维使批评家的关键工具箱无法区分透明的欺诈性绿色洗涤和科学支持但具有意识形态的责任。本文的重点是人类学意识形态的空间维度。它特别着眼于人类世界经济中外太空的不断增长的位置和修辞功能。它说明,至少在与区域外星空间相抵触这种增长的情况下,出现了外星生长的承诺,已经成为一种有效的手段,即以行星福祉的名义证明不平等的方法,以及尽管我们越来越多地为我们的行星限制了限制了生长的福音。
猜想(量子强宇宙审查)设 S 为(不一定是全局双曲)时空 ( M , g ab ) 的严格偏柯西曲面,设 D ( S ) 为其依赖域。( D ( S ) , ^ g ab )本身可以看作是一个全局双曲时空,其中 ^ g ab = ψ − 1 ∗ g ab ,ψ : D ( S ) → ψ ( D ( S )) ⊂ M 是等距嵌入。设 A 是定义在 ( M , g ab ) 上的 F 局部量子场论,设 B 是同构于 A ( M ; D ( S )) 的 ( D ( S ) , ^ g ab ) 上的量子场论。设 ω : B → C 是一般的纯 Hadamard 态。那么,一般来说,不存在将 ω 扩展至 Hadamard 状态 ω : A ( M ; D ( S )) → C 的情况。
辐射。然而,这种辐射只取决于黑洞的几何特性,完全由其质量、电荷和角动量表征,而不取决于最初形成黑洞或进入黑洞的物质的细节。详情见图1。在图1所示的黑洞蒸发过程中,I − 处的初始纯内态(例如,在形成黑洞的下落物质的经典配置周围“达到峰值”的相干内态)与 I + 处的最终外态是酉不等价的,后者必然是混合的,因为 I + 不是蒸发前区域的柯西曲面,这一点在过去已经多次被争论过(例如参见 [ 4 ])。这就是黑洞信息丢失之谜,简洁地表述为在半经典蒸发图中,最初的蒸发前纯态可以演化为蒸发后混合态的情况。因此,量子决定论似乎失败了(大致称为信息丢失——我们将继续使用这个术语)。有多种方法可以缓解或解决这个难题,但这些方法都不是定论。例如,请参阅[3-6]中的一些有趣的观点和历史记载。我们的目的是论证,与通常的民间传说相反,标准的半经典论证不会导致信息丢失。相反,有强有力的证据表明,量子强宇宙审查似乎阻止了对蒸发最后阶段的真正半经典描述。此外,我们认为,如果从表面上看,半经典引力表明最终奇点的形成,而不是图 1 中的柯西视界,并且没有
2深空探索实验室,Hefei,230022,中国3现代物理系,中国科学技术大学,Hefei 230026,中国4 Hefei国家体育科学实验室,中国科学技术大学,Hefei,Hefei,230026,中国,
该研讨会旨在与社区内的宇宙射线测量和分析以及其他感兴趣的科学家,政策制定者和行业代表分享知识和最新进展的机会。该研讨会的主要目标是(1)在部署低成本且可靠的宇宙射线探测器网络(每个探测器中都有多个传感器)来发起努力,以监视全球范围内实时时间的宇宙射线通量变化,以及(2)以加强与宇宙射线射线数据的诠释,并在新的研究中进行了新的研究,并在新的研究中进行了新的研究和新的研究。
深处的实验室基础设施已广泛用于探索罕见事件,例如质子衰减,暗物质搜索或中微子相互作用,利用了它们的大型MUON液压减少。但是,只有很少的研究评估了低背景辐射环境对生物体的影响。以此目的,Canfranc地下实验室(LSC)于2021年推出了生物学平台,为批准的生物学实验提供了实验室空间。已经建立了两个相同的实验室(地下和表面),以在相同条件下复制生物学实验,主要区别是宇宙辐射背景。使用LSC设施的访问协议包括每年两个打开的电话,并为执行实验程序分配了时间窗口,这导致了第一个批准并已经运行的实验。我们描述了Canfranc生物学平台的科学计划,该计划探讨了极端粒子,病毒感染,免疫系统,多细胞性,发育或衰老的宇宙沉默以及第一个实验结果。该平台还允许在没有辐射的情况下观察生命对微重力的反应,这是探索太空生命的关键条件。
Francisco Garcia-Gonzalez(paco.garcia@ebd.csic.es)隶属于西班牙塞维利亚的DoñanaBiological Station(西班牙研究委员会)的生态与进化系(西班牙塞维利亚研究委员会),以及西澳大利亚西部澳大利亚西部澳大利亚西部澳大利亚澳大利亚大学生物科学学院的进化生物学中心。William J. Ripple隶属于俄勒冈州立大学森林生态系统与社会部以及美国俄勒冈州科瓦利斯的保护生物学研究所。Aurelio F. Malo隶属于全球变化生态学和进化研究小组,位于西班牙阿尔卡拉·亨纳雷斯(AlcaláDeHenares)的Deciencias de la Vida deciencias de la Vida,与伦敦帝国帝国学院的伦敦帝国伦敦帝国伦敦市,位于伯克郡伯克希尔·伯克希尔(Berkshire Berkshire Berkshire Kingdom),伦敦帝国帝国学院伦敦帝国伦敦帝国学院。
许多公司正在竞争利用生成人工智能(AI)的力量获得竞争优势。,但是很快就会意识到将AI技术集成到现有环境中可能是一项非凡的任务。同时,其他公司可能会犹豫采用生成AI,因为通用模型并没有提供发展竞争性和宝贵结果所需的灵活性,安全性和高质量数据来源。
各种粒子探测器在雷暴期间探测到的地球表面粒子爆发源自相对论性失控电子雪崩 (RREA),这种雪崩是由强大气电场中加速的自由电子引起的。雷雨云中两个方向相反的偶极子将电子加速到地球表面和开放空间的方向。轨道伽马射线天文台观测到的粒子爆发称为地面伽马射线闪光 (TGF),能量为几兆电子伏,有时仅达到几十兆电子伏;地面粒子探测器记录的粒子爆发称为雷暴地面增强 (TGE),能量通常达到 40-50 兆电子伏。对流层中的气球和飞机记录到伽马射线辉光(能量为几兆电子伏)。最近,高能大气物理学还包括所谓的向下 TGF (DTGF),即持续时间为几毫秒的强烈粒子爆发。众所周知的广泛空气簇射 (EAS) 源自星系质子和完全剥离的原子核与大气原子的相互作用。EAS 粒子在簇射轴周围具有非常密集的核心。然而,EAS 核心中的高能粒子由非常薄的圆盘组成(几十纳秒),并且 EAS 核心穿过的粒子探测器不会记录粒子爆发,而只会记录一个非常大的脉冲。只有中子监测器才能记录粒子爆发,它通过收集 EAS 核心粒子与土壤相互作用产生的延迟热中子来记录粒子爆发。我们讨论了最大粒子阵列中可获得的短粒子爆发与 EAS 现象之间的关系。我们证明中子监测器可以将 EAS 的“寿命”延长至几毫秒,与 DTGF 的持续时间相当。我们还讨论了使用中子监测器网络进行高能宇宙射线研究的可能性。简明语言摘要:在太空、对流层和地球表面记录了短粒子爆发和长粒子爆发。通过对粒子通量、近地表电场和闪电的协调监测,可以提出关于强烈爆发的起源及其与广泛空气簇射和大气放电的关系的假设。通过对观测数据和粒子爆发可能起源情景的分析,我们可以得出结论:爆发可以用雷鸣大气中的电子加速以及由高能质子和银河系中完全剥离的原子核加速在地球大气中形成的巨大簇射来解释。