可再生氢能越来越多地被认为是与欧盟气候中和目标兼容的关键脱碳选项之一。我们量化了到 2050 年通过使用离网可再生电力发电系统进行电解可再生氢能生产可能的成本降低。我们关注 30 个欧洲国家的太阳能光伏和陆上和海上风能的使用情况。我们预测,到 2050 年,欧洲几个国家的氢气生产成本将降至 2 欧元/千克以下。混合配置(由陆上风能和太阳能光伏发电组成)通常可降低可再生氢能的生产成本。满负荷小时数相对较高的系统可受益于电解器组件投资成本的降低。尽管太阳能光伏发电的预期平准化成本最终会很低,但只有实现电解器成本大幅降低,通过太阳能光伏系统生产的氢气的平准化成本才能与风能系统竞争。这项分析的新颖之处在于,它概述了绿色氢气生产成本的依赖关系,以及这些成本在未来几十年内如何在欧洲大部分国家中下降。具体来说,我们展示了每个国家预计的可再生氢气生产成本背后的动态如何凸显了技术学习在确定最适合氢气生产的地点方面可能发挥的作用。
在停电的情况下,将电池用作备用,是电信公司采用的一种常见做法,需要保持其服务始终活跃。此外,只要尊重安全使用规则,这些电池也可以用于其他目的,例如参与能源市场以减少电费。在这种情况下,当能源成本更高并在能源成本更低时充电时,可以使用电池,这被称为需求响应机制。我们在这项工作上的重点是优化安装备用电池以参与需求响应机制,以降低公司的总能源成本。我们正式陈述了相关的优化问题,并提出了两种解决方法的解决方法:一个混合企业计划和一种启发式程序来解决大型实例。基于法国电信运营商的真实数据的模拟证明了使用电池通过参与需求响应机制来降低公司的能源成本的相关性。所提出的启发式被证明在经济上是相关的,并且在计算上有效,是用于大规模问题的混合企业计划的良好替代方法。关键字:多电池储能系统,需求响应机制,优化,混合智能程序,启发式
早期在线版本:该初步版本已被接受以供天气,气候和社会出版,可以完全引用,并已分配DOI 10.1175/wcas-d-24-0057.1。最终的排版复制文章将在发布时在上述DOI上替换EOR。
Youness Kouzi,Zakarya Chafiq Elidrissi,Brahim Achiou,Dounia Beqqour,Saad Alami Younssi等。在低成本富硅的支持上增强了氧化石墨烯氧化石化膜的稳定性和性能:两种激活方法的比较研究。过程安全与环境保护,2024,188,第1574-1583页。10.1016/j.psep.2024.06.015。hal-04646077
日本政府已宣布承诺到 2050 年实现温室气体净零排放。它设想氢能在未来国家能源经济中发挥重要作用。本文探讨了利用中国海上风电电解生产这种重要氢能来源的可能性。氢能可以液态、与甲苯等化学载体结合或作为氨的成分输送到日本。本文分析了决定这种氢能最终成本的因素,包括生产、储存、转化、运输和目的地处理的费用。本文得出的结论是,中国氢能的输送量和成本可以与日本理想的未来预测一致。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
氨基酰基-TRNA和GTP结合的翻译伸长因子EF-TU识别核糖体的A位点密码子取决于多肽(P)和出口(E)密码子位点中存在的密码子和TRNA物种。为了了解密码子环境如何影响tRNA结合的EF-TU识别密码子识别的效率,开发了一个遗传系统,可以通过慢速翻译密码子组合选择快速翻译。选择通过慢速翻译的UCA-UAC对,两侧是Histi Dine密码子,从而在必需的TRNA Leuz的D-STEM中分离了A25G碱基取代突变体,该突变体识别UUA和UUG亮氨酸密码子。Leuz(A25G)替换允许通过包括UCA密码子在内的所有密码子对进行更快的翻译。插入。这项工作是根据trpt tRNA中的Hirsh UGA非理性抑制剂G24a突变所做的,它提供了遗传证据,即通过伸长因子TU进行的GTP后水解校对校验拟合步骤可以通过TRNA物种铰链区域中的结构相互作用来控制。我们的结果支持一个模型,在该模型中,mRNA翻译中的tRNA弯曲成分允许EF TU时间增强其区分cognate和接近同名mRNA密码子之间的tRNA相互作用的能力。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
NITECH的技术证明了迫切需要升级和现代化的能量制造的需求。我们正在与北约几个国家合作,以帮助他们定义旧版批处理处理的现代且更安全的替代方案。“我们有一个独特的价值主张,” Bathgate说。“我们的技术是模块化和灵活的,可以根据实际的市场需求来量身定制生产,并在需要时在现场使用。”
在这些聚合物中,半晶体脂肪族聚酯(PCL)(PCL)(PCL)在从食品包装到生物医学应用的多个域中发现了应用。PCL的多功能性及其在许多工业应用中的用法主要与其固有的特征术有关,包括热(Tg¼65c和tm¼60c)和机械稳定性以及在多种聚合物(例如聚(乙烯基氯化物)或聚(双酚-A碳酸盐))。2此外,可以在适当的修饰阳离子上调整PCL的性质。例如,可以通过制备含有3个 - 可己酮和其他单体的共聚物来定制其机械性能。此外,如使用