本研究旨在使用机器学习(ML)模型将四个棉花叶的数据集准确地分类为感染或健康。细菌疫病,卷曲病毒,叶片和健康叶子被用作研究的数据集。mL是检测棉叶疾病的有用工具,可以最大程度地降低疾病率。问题在于,如果没有机器学习技术,检测疾病的疾病是非常困难的,那么就提出了机器学习模型并测试所提出模型的准确性,使用了混淆矩阵概念。研究人员已经通过使用(ML)模型进行了研究工作来诊断疾病,但其研究的缺点是不同(ML)模型给出的结果不准确。该研究的目标是使用传统技术在早期阶段鉴定影响棉花植物的疾病。但是,利用各种图像处理技术和机器学习算法(包括卷积神经网络)被证明有助于诊断疾病。这种技术方法可以简化发现叶片受损的发现,并最大程度地减少农民在发现这些疾病方面的努力。棉花是一种大规模生产的天然纤维,它在整体农艺土地的2.5%上生长。发现棉花叶疾病对于维持农作物的生产力并为农民提供可靠的收入至关重要。混淆矩阵是n x n矩阵,用于评估分类模型的性能,其中n是目标类的数量。矩阵将实际目标值与机器学习模型预测的目标值进行了比较。该技术具有四个参数,可以测试我的研究工作中给出的结果的准确性。
begomovirus具有传染性,并且严重影响了商业上重要的食物和粮食作物。棉叶卷曲的木木病毒(Clcumuv)是巴基斯坦棉花病毒最主要的特征之一,是对棉花产量的主要限制。目前,植物基因组编辑领域正在通过CRISPR/CAS系统应用(例如基础编辑,主要编辑和基于CRISPR的基因驱动器)进行革命。CRISPR/CAS9系统已成功用于模型和作物植物中的概念概念研究,以针对生物和非生物植物应力。CRISPR/CAS12和CRISPR/CAS13最近已在植物科学中应用于基础和应用研究。在这项研究中,我们使用了一种新型的方法,基于CRRNA的CAS12A工具箱,同时在多个位点靶向Clcumuv基因组的不同ORF。这种方法成功地消除了烟熏本尼亚娜和烟草的症状。从Clcumuv基因组设计了三个单独的CRRNA,针对四个不同ORF(C1,V1和C2和C3重叠区)的特定位点。基于CAS12A的构建体Cas12a-MV是通过金门三向克隆设计的,用于精确编辑Clcumuv Genome。cas12a-MV构建体是通过使用引物UBI-Intron-F1和M13-R1的整个基因组测序来确认的。通过农业纤维化方法,在4周大的尼古蒂亚纳本田植物中进行了瞬态测定。sanger测序表明,CAS12A-MV构建体在病毒基因组的靶位点上产生了相当大的突变。此外,对Sanger测序结果的潮汐分析显示了CRRNA1(21.7%),CRRNA2(24.9%)和CRRNA3(55.6%)的编辑效率。此外,Cas12a-MV构建体通过叶盘方法稳定地转化为烟草Tabacum,以评估转基因植物对Clcumuv的潜力。进行转基因分析,对烟草的转基因植物的DNA进行了PCR,以扩大具有特定底漆的Cas12a基因。传染性克隆在感染性测定中的转基因和非转基因植物(对照)中被农民接种。与具有严重症状的对照植物相比,含有Cas12a-MV的转基因植物表现出少数症状,并且保持健康。与对照植物相比,含有CAS12A-MV的转基因植物显示出病毒积累的显着降低(0.05)(1.0)。结果表明,多重LBCAS12A系统的潜在用途在模型和作物植物中针对贝诺维病毒中发展病毒抗性。
1 佐治亚南方大学建平许公共卫生学院生物统计学、流行病学与环境健康科学系,美国佐治亚州斯泰茨伯勒 30460;tjthornton65@gmail.com (TT);ca13007@georgiasouthern.edu (CA) 2 伊利诺伊大学香槟分校农业、消费者与环境科学学院食品科学与人类营养系,美国伊利诺伊州厄巴纳 61801;pratik@illinois.edu 3 田纳西大学教育、健康与人文科学学院公共卫生系,美国田纳西州诺克斯维尔 37996;dhiggin6@utk.edu 4 佐治亚南方大学建平许公共卫生学院卫生政策与社区健康系,美国佐治亚州斯泰茨伯勒 30460; ss35449@georgiasouthern.edu * 通讯地址:aadhikari@georgiasouthern.edu;电话:+1-912-478-2289
化学氮肥可以维持作物生产力,但是化学氮肥过度使用会导致经济成本和环境污染。减少氮肥使用使用的一种方法是将氮酶生物合成途径转移到非乳状植物中。Fe蛋白是氮酶的两个结构成分。NIFB是一个关键的成熟酶,它催化了结合和减少n 2的氮酶Femo-Concactor的生物合成中的第一个投入步骤。NIFB,NIFH,NIFD和NIFK的表达对于产生能够固定大气N 2的植物至关重要。在这项研究中,Paenibacillu Polymyxa Wly78的四个基因(NIFB,NIFB,NIFD和NIFK)通过CRE/LOXP重组系统组装在植物表达vector PCAMBIA1301中,从而产生重组表达vector PCAM- bia1301301-nifbhdk。然后,使用tumefaciens介导的转化将表达载体中携带的四个NIF基因共同融入了高地棉R15。通过PCR和RT-PCR选择了T 3代的纯合转基因棉线B2,B5和B17。QRT-PCR显示,NIFB,NIFH,NIFD和NIFK在类似水平的转基因棉中共表达。Western印迹分析表明,NIFB,NIFH,NIFD和NIFK是在转基因棉中共同生产的。棉花中四种关键的NIF蛋白(NIFB,NIFH,NIFD和NIFK)的共表达是工程氮酶生物合成途径的重要一步。
在重大健康问题之外,使用前十种常规棉农药中的一些引起了相当大的环境问题。例如,迪坎巴(Dicamba)在2024年禁止使用棉花,因为它的脱靶运动以及对非目标农作物和其他植物的损害。也已知它会对鸟类,哺乳动物,蜜蜂(幼虫),水生植物和非目标陆生植物造成不利影响。acephate(包括其降解甲基载体)对蜜蜂和有益的掠食性昆虫有剧毒,急性接触。对鸟类的急性和慢性风险,哺乳动物的慢性风险也很高。甲基动物,本身就是一种活性成分,
1。引言脱氧核糖核酸(DNA)是到1944年生命遗传材料的功能组成部分,其化学和物理属性是由Watson and Crick发现的,这为突破铺平了揭示该分子结构的道路(Watson和Crick,1953年)。双螺旋彻底改变了生物学和其他相关学科,因为生物的许多形式和功能及其在后代的遗传可以归因于DNA结构所揭示的染色体和单个DNA序列。自从这一发现以来,植物育种者和生物技术医生已经严格挖掘了定制DNA的可能策略,以增强生存能力和提高性能。在鉴定DNA之前,长期以来人们认为蛋白质是负责基因表达和遗传的唯一分子。此发现后,关键链接为
因为纤维素和PET在化学上是完全不同的,因此对这两种聚合物的分析是通过溶液 - 气相色谱法分析是一项简单的任务。当材料(尤其是一个太大的分子而无法通过GC分析)的材料被毒死时,它会分解成较小的分子,该分子保留了原始聚合物的化学信息。这些较小的分子可以通过GC分析,产生代表父材料诊断片段的峰的模式。图1显示了从加热至750°C的棉线产生的热解色谱图(图片)15秒。当纤维素热降解时,它会产生水和二氧化碳,以及许多其他有机材料,包括醛和酮。PET降解以产生芳香剂,包括苯,苯甲酸和聚合物的低聚片段。图2显示了宠物服装线的图2,其中苯甲酸在大约11分钟时洗脱。棉花和聚酯纤维的混合物将在图1和2中显示在同一灵性图中的两个峰,因为每个聚合物都基本上是独立的。
叶形被认为是作物育种中最重要的农艺性状之一。然而,棉花叶片形态发生的分子基础仍然很大程度上未知。在这项研究中,通过使用叶片向上卷曲的天然棉花突变体 cu 进行遗传作图和分子研究,成功鉴定出致病基因 GHCU 是叶片扁平化的关键调控因子。使用 CRISPR 敲除棉花和烟草中的 GHCU 或其同源物会导致叶片形状异常。进一步发现,GHCU 促进 HD 蛋白 KNOTTED1-like (KNGH1) 从近轴区域到远轴区域的运输。GHCU 功能的丧失将 KNGH1 限制在近轴表皮区域,导致近轴边界的生长素反应水平低于远轴区域。生长素分布的这种空间不对称产生了 cu 突变体向上卷曲的叶片表型。通过单细胞 RNA 测序和时空转录组数据分析,证实生长素生物合成基因在近轴和远轴表皮细胞中不对称表达。总体而言,这些发现表明 GHCU 通过促进 KNGH1 的细胞间运输,从而影响生长素反应水平,在叶片扁平化的调控中起着至关重要的作用。
标记辅助选择(MAS)是提高棉花作物质量的基本方法。但是,该研究领域中的全面文献计量分析仍然缺乏。在2023年8月,我们根据Scopus数据集的书目记录使用了科学,计算机辅助的审查方法。采用创新的研究方法已经收集了数据,以降低现行研究趋势,有影响力的期刊,文档类型,多产的作者以及与MAS在棉花研究中应用有关的关键国家。文献计量分析有助于确定当前有关MAS在棉花研究中使用MAS在最多产,最杰出的期刊和文档类型中使用多年,作者,国家和关键词的出版物的出版物的趋势。使用VOS-Viewer,Microsoft Excel和Map-chart采用了数据提取,集成和可视化。提到的评论提到了273份研究手稿,该手稿在Scopus数据库中检索的72篇期刊上发表,中国和美国被确定为最有生产力的国家。作者,包括Zhan T,Zhang J,Guo W,Fan DD和Yuan Y,成为MAS研究的有影响力的贡献者。最重要的领域是农业和生物科学,生物化学,遗传学和分子生物学。最新的审查研究将客观地评估棉花研究中的MAS利用率的当前状态,为寻求有关棉花中MAS技术信息的个人提供宝贵的见解,并作为研究人员的参考指南,以探索该领域的进一步研究。
混纺是一种混合过程,其中将两种或多种不同的纤维组合成所需的百分比。在纱线纺纱系统中,可以混合不同的成分、长度、直径或颜色以产生混纺纱。在该系统中,各种纤维组合成均质质量,然后纺成短纤维纱。通常,黄麻和棉纤维混合在一起制成黄麻棉混纺纱。黄麻的多样化用途是混纺纱的一种方式。使用 30%:40%:30% 的比例来制造黄麻棉粘胶混纺纱。棉纺生产线中的转子架生产黄麻棉粘胶混纺纱和 100% 纯棉纱。测量了黄麻棉粘胶混纺纱和 100% 纯棉纱的物理特性,如支数、纱线 Lea 强度和 CSP。其中,黄麻-棉-粘胶混纺纱与纯棉纱的平均支数相近,分别为6.0和5.89。但纯棉纱和黄麻-棉-粘胶混纺纱的纱线强度和CSP分别为318.6磅、208磅和1876、1246,相差较大。混纺纱的CV%、SD、PMD与纯棉纱一致。本研究首次将粘胶与黄麻、棉进行混纺,生产出黄麻-棉-粘胶混纺纱,并对两种纱线的物理性能进行了比较。