研究了有限尺寸开放费米-哈伯德链中的长距离纠缠以及端到端量子隐形传态。我们展示了费米-哈伯德模型基态支持最大长距离纠缠的特性,这使其可以作为高保真度长距离量子隐形传态的量子资源。我们确定了创建可扩展长距离纠缠的物理特性和条件,并分析了其在库仑相互作用和跳跃幅度影响下的稳定性。此外,我们表明协议中测量基的选择会极大地影响量子隐形传态的保真度,我们认为通过选择反映量子信道显著特性的适当基,即哈伯德投影测量,可以实现完美的信息传输。
摘要 本文主要回顾了 NIST 在基于电子电荷的电容标准方面取得的进展。我们简要介绍了库仑阻塞,这是允许控制单个电子的基本物理现象,描述了两种类型的单电子隧道 (SET) 设备,并描述了 SET 设备可实现的计量目标和收益。然后,我们讨论了电子计数电容标准 (ECCS):动机、先前对各种关键元素的实验工作、现状和未来前景。最后一部分包括使用 ECCS 来实际表示电容,并指出我们可以在不需要大值电流标准的情况下关闭量子计量三角。最后,我们简要回顾了其他基于 SET 的计量应用。
1 加州大学河滨分校伯恩斯工程学院电气与计算机工程系纳米器件实验室,加利福尼亚州河滨市 92521,美国 2 波兰科学院高压物理研究所 CENTERA 实验室,波兰华沙 01-142 3 加州大学河滨分校伯恩斯工程学院材料科学与工程项目声子优化工程材料中心,加利福尼亚州河滨市 92521,美国 4 格但斯克理工大学计量与光电子系,波兰格但斯克 80-233 5 华沙理工大学 CEZAMAT 先进材料与技术中心,波兰华沙 02-822 6 蒙彼利埃大学和法国国家科研中心查尔斯库仑实验室,法国蒙彼利埃 34950美国加利福尼亚州里弗赛德市 92521
我们表明,剪切的石墨烯双层可以调节以具有扁平的低能带,以供大量的Moir'e超级细胞。在此制度中,相互作用的系统易于发展破碎的对称阶段,而山谷对称性破裂为主要模式。对称性的强信号有利于配对不稳定性的发作,其中库珀对中具有相反自旋投影的电子生活在不同的山谷中。由于排斥的库仑相互作用,费米线变得扭曲了,这使得筛选高度各向异性,从而在某些相互作用通道中很容易引起吸引力。我们还表明,剪切的石墨烯双层提供了实现奇偶校验和山谷象征的综合分解的可能性,使其非常适合研究二维电子系统中的相关性与拓扑之间的相互作用。
理论上研究了接近性诱导的自旋轨道和交换耦合对菱形三层石墨烯(RTG)相关相图的影响。通过使用Ab Initif拟合的RTG的有效模型,该模型由过渡金属二分法(自旋 - 轨道接近效应)和铁磁CR 2 GE 2 TE 6(交换接近效应),我们将库仑相互作用纳入了随机相互作用,以探索在不同的位置和不同位置的潜在相关阶段。我们发现,由旋转轨道接近效应引起的丰富的自旋瓦利分辨石头和Intervalley相干性不稳定性,例如由于存在谷化量的耦合而出现了旋转 - 瓦利 - 固定相。同样,接近交换通过偏置旋转方向来消除相位变性,从而实现了磁相关效应 - 相关相位对封装铁磁性层的相对磁化方向(平行或反平行)的强灵敏度。
我们报告了在六方氮化硼封装的双栅极单层 WS2 中的电子传输测量结果。使用从室温到 1.5 K 工作的栅极欧姆接触,我们测量了本征电导率和载流子密度随温度和栅极偏压的变化。本征电子迁移率在室温下为 100 cm2/(Vs),在 1.5 K 下为 2000 cm2/(Vs)。迁移率在高温下表现出强烈的温度依赖性,与声子散射主导的载流子传输一致。在低温下,由于杂质和长程库仑散射,迁移率达到饱和。单层 WS2 中声子散射的第一性原理计算与实验结果高度一致,表明我们接近这些二维层中传输的本征极限。
将电动汽车 (EV) 视为主要交通平台的愿景正在慢慢成熟。电动汽车正从一种不拘一格的汽车转变为与燃油汽车并驾齐驱的汽车。由于电动汽车电池组件的成本高达 30,000 美元,因此维护这些系统以最大限度延长使用寿命、提高可靠性和安全性是一项关键指令。电池管理系统 (BMS) 迎接现代电池组件管理的挑战。这基本上是电池维护的缩影。通过采用这种先进的 BMS,电动汽车可以提取每一库仑的电能,优化性能,并尽可能延长电池寿命。此外,要利用 400 V、1000 A+ 电池系统来为需要几毫瓦的其他组件供电,需要突破技术极限。这时集成电阻分压器芯片就可以派上用场了。
OZ93506是一种高度集成的高性能电池管理IC,可以串联监视和保护3到6个单元。它还集成了各种系列通信接口,例如SPI,I2C和UART,以及用于功能扩展的多个通用iOS。OZ93506将32位ARM Cortex M0 MCU与16KBYTES嵌入式Eflash(4K x 32bits)和可选的额外的64K或128KBYTES扩展程序集成,用于高级电池组管理数据和/或代码存储和其他非挥之不去的内存需求。它具有高压(40V)前端,可通过14位ADC测量差分电池电压。它还具有准确的包装电流测量和库仑计数,具有16位的ADC启用SOC和SOH功能。实时比较器提供了当前/短路保护措施的额外快速保护。
•使用专用的主模式I 2 C接口•使用内部搭配的电池平衡来优化电池健康•高方面的N-CH FET驱动器可以在故障条件下进行连续沟通•可编程的电压,电流和温度的可编程保护水平•与两种独立的Adcs contermace conter-cot-cot-cot-accul sambccct-sampccct-sampcc cocts sameper-samembccs samply-same•same Sameps Sampl ockit-Sampl offermobs Samples•高方面的保护水平•可编程的保护级别•高方面的保护水平 - •高方面的防护水平 - 与同步型乘坐相同的前端 - Sampliss Sampcc, 1 µV (typical) • Supports down to 1-mΩ current sense resistor while capable of 1-mA current measurement • Supports battery trip point (BTP) function for Windows ® integration • SHA-1 authentication responder for increased battery pack security • 400-kHz I 2 C bus communications interface for high-speed programming and data access • Compact 12-pin VSON package (DRZ)
