摘要。冰川终止以气候系统不同组成部分的重组为特征。特别是,快速的冰盖瓦解会导致误解的反馈回路,这些反馈循环仍然很少了解。为了进一步研究这一方面,我们在这里使用了完全构成的北半球冰盖模型,以形成最后两个冰川终止的数值实验。我们表明,即使这两个终止的一阶气候轨迹相似,太阳日光差的差异也会导致冰原 - 气候系统的重要变化。在倒数第二次终止期间温度较高,与全新世的最后一次冰河间期间的海平面兼容。我们将最后一次对海平面上升约2 m的海平面上升的冰川绿地贡献。我们还模拟了南大洋的温暖地下,与南极冰盖的副作用兼容。,即使没有考虑冰盖融化而导致的海洋淡水浮游,这两个终止却散发出不同的大西洋推翻循环敏感性,这种循环在五次终止期间更容易占用。最后,在额外的灵敏度实验中,我们表明,对于这两个终止,即使还需要考虑植被变化以模拟整个脱胶裂解,北半球的灭绝也是冰盖重新治疗的主要驱动力。相反,即使它影响温度,温室气体的浓度也单独变化也不能解释冰盖撤退的幅度,而只能调节其时间安排。
的确,与上述标准有关,未冷却的重测技术是THZ 2D成像的有前途的候选人。它在室温下运行,阵列在硅微电子铸造厂的高级CMOS应用特定集成电路(ASIC)上方生产,紧凑的单层大型2D阵列 - 现在以连续降低价格在工业上生产Mpixel格式。作者组[3]用Leti-Ulis专有的非定形 - 硅螺旋体传感器测试了此成像设置配置[4]。用量子级联激光器(QCL)在3 THz下的测量显示出小于0.5%的光吸收效率。即使这种敏感性足以进行测试过的活动THZ成像设置,这些结果也促使研究了BOLOMETER PISERETURTER的研究,专门调整了对THZ辐射的感觉,以便遵守现实生活中的用户库。
我们考虑一个一维拓扑超导体,该超导体在其末端与单个模式腔相连。在强烈的光结合方案中,电子和光子自由度杂交,导致了极化子的形成。我们通过计算耦合电子光子系统的腔光子光谱功能来找到偏振子光谱。在拓扑阶段中,能量极化模式下的较低是由与腔光子相连的散装 - 摩霍拉纳跃迁形成的,并且对Majoraana Parity也很敏感。在琐碎的阶段,由于跨间隙跨间隙与光子的散装转变耦合,下极化模式出现了。我们的工作证明了在拓扑超导体中形成偏振子,该拓扑超导体与光子有关,这些光子包含有关Majorana结合状态特征的信息。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 2 月 3 日发布。;https://doi.org/10.1101/2025.02.02.636169 doi:bioRxiv 预印本
Xianyi Yang,Adam Abdin,Jakob Puchinger。 对共享的自动驾驶电动汽车和电网的最佳管理:可再生能源整合的潜力。 运输研究。 C部分,新兴技术,2024,165,pp.104726。 10.1016/j.trc.2024.104726。 hal-04618301Xianyi Yang,Adam Abdin,Jakob Puchinger。对共享的自动驾驶电动汽车和电网的最佳管理:可再生能源整合的潜力。运输研究。C部分,新兴技术,2024,165,pp.104726。10.1016/j.trc.2024.104726。hal-04618301
介绍了一种用于在纳米表面结构上制造 TiN 纳米结构的电感耦合等离子蚀刻工艺。使用 Cl 2 /Ar/N 2 等离子体,在 SiO 2 上可实现 50 的选择性。研究了 N 2 流速对蚀刻速率和 TiN 侧壁上非挥发性残留物的影响。当 N 2 流速增加到 50 sccm 时,观察到 TiN 侧壁上非挥发性残留物的沉积发生变化。介绍了用 TiN 纳米结构侧壁制造的 TiN 器件的电流密度-电压特性。分别用低和高 N 2 流速蚀刻的两个不同样品的测量电流密度表明,仅在低 N 2 流速下,清洁后才会在侧壁上沉积一层绝缘层。VC 2015 美国真空学会。 [http://dx.doi.org/10.1116/1.4936885]
结果:我们生产了一种不含佐剂的自组装纳米颗粒疫苗,可对抗多种甲型流感病毒。这种纳米颗粒疫苗在幽门螺杆菌铁蛋白表面显示多抗原靶点,该铁蛋白由 H3N2 病毒血凝素的胞外域和三个串联高度保守的甲型流感病毒 M1 表位组成,这些表位与通用辅助 T 细胞表位 PADRE 融合,称为 HMP-NP。HMP-NP 在杆状病毒-昆虫细胞系统中以可溶形式表达,并自组装成均质纳米颗粒。动物免疫研究表明,HMP-NP 纳米疫苗引起的血凝抑制 (HAI) 滴度比灭活甲型流感疫苗高 4 倍。 HMP-NPs 对 H3N2 病毒和 H1N1 和 H9N2 病毒异源株诱导的中和滴度分别比灭活流感疫苗高约 8、12.4 和 16 倍。同时,我们还观察到 HMP-NPs 诱导的 IFN-γ 和 IL-4 分泌细胞数量比灭活流感疫苗高约 2.5 倍。重要的是,使用 HMP-NPs 进行鼻内免疫(不使用任何佐剂)可诱导有效的粘膜 IgA 反应并赋予对 H3N2 病毒的完全保护,以及对 H1N1 和 H9N2 病毒的部分保护,并显着降低肺病毒载量。
磁共振成像 (MRI) 是一种多功能医学成像方式,可在软组织之间提供出色的对比度。可以调整采集参数,以使这种对比度对各种组织特性敏感,例如质子密度以及纵向和横向弛豫时间(分别为 T 1 和 T 2 )。MRI 采集包括使用各种电磁脉冲反复激发人体内质子,并从图像中获取少量傅里叶样本。然后通过逆傅里叶变换运算将频域中的观测值重铸到空间域。典型的 MRI 数据包括任意方向的 2D 或 3D 图像。后者具有两个平面内空间维度和切片方向的第三个空间维度,因此它们可以看作张量。然而,MRI 的采集时间相对较慢,通常需要几分钟的时间。这种技术限制会阻碍 3D 高分辨率图像的采集。为了避免这个缺点,超分辨率技术已被证明在许多情况下是有效的 [1],[2],[3]。它们包括从一个或多个低分辨率观测中恢复 3D 高分辨率图像。最近,有人提出使用深度学习从单个低分辨率观测中恢复高分辨率图像 [4],[5]。然而,对于小病变,最好考虑多个观测以用于图像的诊断。这些观测可以合并到融合模型中,从而提供比单独处理更多的信息 [6]。使用融合范式避免了依赖外部患者数据库来获取先验信息。因此,在剩下的文章中,我们将重点关注从多个观测中进行超分辨率重建的问题,也称为多帧超分辨率。
耦合到光腔的带电半导体量子点(QD)的自旋是高限制自旋 - 光子接口的有前途的候选者;腔体有选择地修饰光学跃迁的衰减速率,以便在单个磁场几何形状中可以旋转初始化,操纵和读数。通过执行空腔QED计算,我们表明具有单个线性极化模式的空腔可以同时支持高实现的光学自旋初始化和读数,并在单个平面内(VOIGT几何学)磁场中同时支持。此外,我们证明了单模型腔始终在实验性良好的驾驶方案中胜过双峰腔。我们的分析与VOIGT几何形状结合了既定的控制方法,为高实现初始化和读数提供了最佳参数制度,并在两种腔体配置中提供了一致的控制,并为QD Spin-Photone Interface的设计和开发提供了QD Spin-Phot-Phot-Phot-Phot-Phot-Phot-Phot-Photone Interface的洞察力。
摘要 — 如果不是因为其有限的 e 31,f 压电系数,氮化铝 (AlN) 为压电微机械超声换能器 (pMUT) 提供了一种与 CMOS 兼容、稳定且无铅的解决方案。尽管已知增加 ScAlN 中的钪 (Sc) 掺杂含量可以提高机电耦合因子 (K t 2 ) 和整体声学性能,但结果在很大程度上取决于 ScAlN 薄膜的应力,尤其是对于空气耦合 pMUT。本研究旨在比较由于 Sc 含量从 20% 增加到 30% 而导致的 pMUT 性能(以 K t 2 为单位)与应力的关系,并考虑其对频率和膜静态变形的影响。结果表明,30% Sc 器件在 -50 MPa 时实现了平均 K t 2 >6%,与基于 PZT 的 pMUT 相当。与 20% Sc 相比,30% Sc 掺杂的 pMUT 传输压力灵敏度提高了 50%,双向灵敏度总体提高了 6 dB。