抽象的人皮肤通过皮下触觉小体之间的协同作用感知外部环境刺激。通过模仿人皮肤的功能,具有多种感测功能的软电子产品在健康监测和人造感觉中具有重要意义。最近十年见证了多模式触觉感应设备和软生物电子学之间前所未有的发展和融合。尽管有这些进展,但传统的柔性电子设备通过将单极传感设备整合在一起,以实现压力,应变,温度和湿度的多模式触觉感应。此策略导致高能消耗,有限的整合和复杂的制造过程。已经提出了各种多模式传感器和无串扰的传感机制来弥合自然感觉系统和人工感知系统之间的差距。在这篇综述中,我们提供了触觉传感机制,集成设计原理,信号耦合策略以及当前用于多模式触觉感知的应用的全面摘要。最后,我们强调了当前的挑战,并提出了未来的观点,以促进多模式触觉感知的发展。
fi g u r e 2在高山草原中评估的全范围植物和土壤特性的季节性动态。属性按最大季节进行分组:(a)春季; (b)夏天; (c)秋天。在灌木膨胀下,某些特性明显更高( + s)或较低(-s)。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。 出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。 对未量化的数据进行统计分析n = 8。 有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。对未量化的数据进行统计分析n = 8。有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。
具有不完整输入数据(缺少模态)的多模式学习是实用且具有挑战性的。在这项工作中,我们对这一挑战进行了深入的分析,发现模式优势对模型训练具有显着的负面影响,从而极大地降低了缺失的模态性能。是由Grad-CAM激励的,我们引入了一种新颖的指标,梯度,以监测和减少在缺失情景中广泛存在的模态主导性。为了帮助该指标,我们提出了一种新颖的梯度引导的模态解耦(GMD)方法,以促进对主导方式的依赖性。特定的是,GMD从不同模态中删除了冲突的梯度成分,以实现这种去耦,从而显着提高了性能。此外,要弹性处理模态分配数据,我们设计了一个参数有效的动态共享(DS)框架,该框架可以根据是否可用,可以根据是否可用来求解网络参数。我们对三个流行的多模式基准进行了广泛的实验,包括Brats 2018用于医学分割,CMU-MOSI和CMU-MOSEI进行情感分析。结果表明,我们的方法可以显着胜过竞争对手,表明所提出的解决方案的有效性。我们的代码在此处发布:https://github.com/haowang420/gradient-gendient-gudide-modality-decoupling。
关于土壤水分 - 预应反馈的迹象的争论仍然开放。一方面,使用全球粗分辨率气候模型的研究发现了强烈的积极反馈。但是,这样的模型不能明确表示对流。另一方面,使用KM规模的区域气候模型和明确对流的研究报告了负反馈。然而,在这种模型中规定了大规模的循环。这项研究使用具有明确对流的全局,耦合的模拟进行了重新审视土壤水分 - 沉淀反馈,并将结果与粗分辨率模拟与参数化对流进行了比较。我们发现,大多数要点的显着差异,反馈较弱且占据显式对流的负面差异。与粗分辨率模型相比,在存在土壤湿度异质性的情况下,在潮湿的方向上更经常在潮湿的状态下,在土壤水分异质性的情况下触发对流的模型。进一步的分析表明,不仅土壤水分和蒸散量之间的反馈,而且蒸散量和降水之间的反馈也较弱,与观察结果更好地一致。我们的发现表明,粗分辨率模型可能不太适合研究土地上气候变化的各个方面,例如干旱和热浪的变化。
金属中的声子散射是材料科学中最基本的过程之一。但是,了解此类过程仍然具有挑战性,需要有关声子与电子之间相互作用的详细信息。我们使用超快速电子弥漫性散射技术来解决时间和动量中的飞秒激光器激发剂的钨中的非平衡声子动力学。我们确定声子模式的瞬态群体,这些群体表现出通过电子 - 音波耦合引发的强动量依赖性。对于布里远区域边界附近的声子,我们在大约1皮秒上观察到其人口的短暂上升,这是由强烈的电子 - 音波耦合驱动的,然后在大约8个picsecond的时间表上缓慢衰减,由弱声子 - 音音子释放过程控制。我们发现,隔离这两个过程需要钨的特殊谐波,从而导致纯金中的长期非平衡声子。我们发现电子散射可能是金属声子热传输的决定因素。
1个国家主要光子学和仪器的主要实验室,Zju-hangzhou全球科学与技术创新中心,信息科学与电子工程学院,吉安格大学,杭州大学,杭州310027,中国和国际联合创新中心,Zhejiang University,Zhejiang University,Zhejiang University,Hainning Interventian Ginangion Interventical of Electricals Academy明尼苏达州明尼阿波利斯大学的工程,美国3美国3号高级/纳米电子设备和智人智能系统的钥匙实验室312000,中国4物理和数学科学学院物理和应用部,以及颠覆性光子技术中心,南南技术大学,新加坡637371,新加坡
1 1地球物理动力学实验室,国家海洋与大气管理局,普林斯顿,新泽西州08540,美国2大气与海洋科学,普林斯顿大学,新泽西州普林斯顿大学,18966年,美国3美国环境科学系VA,22030,美国5 NASA-GSFC,全球建模和同化办公室,Greenbelt,MD 20771,美国6,美国6民用与环境工程系,杜克大学,杜克大学,北卡罗来纳州达勒姆大学27708,美国7气候和全球动态,全国大气研究,美国国家80303 Richland,WA 99354,美国9 NASA-GSFC,水文科学实验室,Greenbelt,MD 20771,美国1地球物理动力学实验室,国家海洋与大气管理局,普林斯顿,新泽西州08540,美国2大气与海洋科学,普林斯顿大学,新泽西州普林斯顿大学,18966年,美国3美国环境科学系VA,22030,美国5 NASA-GSFC,全球建模和同化办公室,Greenbelt,MD 20771,美国6,美国6民用与环境工程系,杜克大学,杜克大学,北卡罗来纳州达勒姆大学27708,美国7气候和全球动态,全国大气研究,美国国家80303 Richland,WA 99354,美国9 NASA-GSFC,水文科学实验室,Greenbelt,MD 20771,美国
上皮细胞上的顶纤毛通过从呼吸道气道中推动病原体和颗粒物来捍卫肺。纤毛细胞产生的ATP,可以通过将顶部膜下方的线粒体密度分组为纤毛跳动。但是,这种有效的定位是付出代价的,因为在氧化苯二元化过程中泄漏的电子与分子氧反应形成超氧化物,因此,线粒体的簇产生了用于氧化生产的热点。相对较高的氧气浓度上覆的气道上皮进一步增强了产生超氧化物的风险。因此,气道纤毛细胞面临产生有害氧化剂水平的独特挑战。令人惊讶的是,高度纤毛上皮产生的活性氧(ROS)比几乎没有纤毛细胞的上皮含量较少。与其他空气细胞类型相比,纤毛细胞表达高水平的线粒体解偶联蛋白UCP2和UCP5。这些蛋白质降低了线粒体质子示数力,从而降低了ROS的产生。结果,脂质过氧化是氧损伤的标志物,减少了。然而,线粒体解偶联蛋白的确切价格可以减少氧化剂的产生;它们减少了产生ATP的线粒体呼吸的比例。这些发现表明纤毛细胞牺牲线粒体效率,以换取安全氧化的安全性。使用解偶联蛋白来防止氧化剂产生,而不是仅仅依靠抗氧化剂来降低后生产氧化剂水平,可能为靶向靶向强烈的ROS产生的局部区域提供了优势。
由于制造技术和集成密度成熟,成熟的绝缘体上硅平台在大规模集成光子和量子光子技术中前景广阔。本文,我们介绍了一种高效稳定的光纤到芯片耦合,可将电信量子点的单光子注入绝缘体上硅光子芯片。另外两根光纤将芯片进一步耦合到单光子探测器。实现稳定光纤-芯片耦合的方法是基于使用与成角度的单模光纤稳定封装的光栅耦合器。使用这种技术,光纤和 SOI 芯片之间的耦合效率高达每个光栅耦合器 69.1%(包括锥度损耗)。通过使用 Hanbury-Brown 和 Twiss 装置测量二阶相关函数,验证了量子点产生的量子光与硅元件之间的有效界面。通过 g = 2 = 0 = 0 : 051 6 0 : 001,清楚地证明了注入的 QD 光子的单光子性质。这证明了接口方法的可靠性,并开辟了使用电信量子点作为具有高复杂性硅光子功能的非经典光源的途径。
摘要:我们基于综合专利数据制定了衡量美国和中国之间技术脱钩和依赖程度的指标。本世纪前二十年,技术融合稳步增长(或脱钩程度降低),但中国对美国的依赖在第一个(第二个)十年增加(减少)。受中国战略性新兴产业政策覆盖的企业与美国的脱钩程度降低,获得了现金流和估值,但创新产出/质量或生产率均未见改善。美国制裁后,受制裁行业及其下游企业的业绩受到影响,但与美国的脱钩程度也降低。然而,受制裁行业上游的企业提高了生产率,并产生了更多高质量的创新。