1.1 共价抑制剂 大多数小分子药物通过与疾病相关靶标可逆、非共价结合实现其生物学效应。相反,药物化学家在很大程度上避免设计共价药物,这种药物通过化学反应与靶蛋白形成共价键。[1] 这是因为人们担心它们可能具有不加区分的反应性,怀疑会引发脱靶效应和特异药物反应。事实上,如果药物具有共价机制,它通常是偶然发现的。成功的共价药物就是例证,如乙酰水杨酸(阿司匹林)、β-内酰胺类抗生素、质子泵抑制剂(如奥美拉唑)或血小板凝集抑制剂氯吡格雷。[2] 然而,最近,精心设计的共价药物被证明可以与靶蛋白形成共价键。
目前,有6种批准的BTK抑制剂(Ibrutinib,acalabrutinib,Zanubrutinib,tirabrutinib和orelabrutinib)靶向BTK的激酶结构域,形成与Cys481的共价键。remibrutib是另一种不可逆的抑制剂,由于与非磷酸化形式的BTK结合而表现出良好的激酶选择性,并且正在荨麻疹和哮喘的诊所进行评估。最近,具有与Cys481建立可逆共价键并暂时失活BTK(Rilzabrutinib)的杂化抑制剂已进入3阶段临床试验,以治疗Pemphigus和免疫血栓性血栓性血小板purpura 1,2。
当 1,3,5-三苯甲醛和 2,5-二氨基苯磺酸通过席夫碱缩合反应发生反应时,只需将溶剂从 DMF 切换到 DMSO,即可合成两种不同形态的双功能共价有机聚合物,从而得到包含花型(F-COP DMF)和环状(C-COP DMSO)形态的共价有机聚合物(COP)。通过使用 TEM、SEM、XRD、FT-IR 和 XPS 分析技术进行表征,比较了合成 COP 的化学和形态性质。除了形态各异之外,还发现这两种聚合物材料具有相似的化学性质,都带有质子酸 - SO 3 H 和路易斯碱 - C=N 官能团。随后,对这两种 COP 进行了评估,用于通过果糖脱水合成羟甲基糠醛(HMF),以研究其形态依赖的催化活性。
用于治疗各种临床适应症,包括癌症、抗感染、胃肠道、中枢神经系统和心血管疾病。1–3 例如,阿司匹林是一种已使用了 100 多年的止痛药,它共价乙酰化环氧合酶-1 (COX-1) 的活性丝氨酸残基,而 COX-1 是一种在前列腺素生物合成中起关键作用的酶。4–6 除阿司匹林外,青霉素类抗生素是另一个经典的共价抑制剂例子,其中 β-内酰胺支架不可逆地与细菌 DD-转肽酶 (也称为青霉素结合蛋白) 的活性位点丝氨酸结合,从而使负责细菌细胞壁合成的酶失活。 7,8 尽管共价药物取得了成功,但在 2013 年首个共价激酶抑制剂依鲁替尼获批之前,共价药物在药物化学和药物开发中一直被忽视。人们之所以不愿使用共价药物,主要是因为人们担心由于反应性混乱、半抗原化和特异性药物相关毒性而导致的潜在脱靶毒性。9–11 研究表明,化学反应性药物代谢物可以与肝脏蛋白共价结合,从而引起肝毒性。12,13 放射性标记研究表明,产生的反应性物质与各种细胞蛋白共价结合,这可能导致细胞毒性。14 在某些情况下,反应性药物代谢物与蛋白质的共价结合可能具有免疫原性,导致患者出现过敏反应。1,15
为了确定基板的切口,XRD 用于精确测量布拉格角(衍射角)的变化,因为基板的旋转角度相对于入射的 X 射线束会发生变化。如果布拉格角随基板的旋转角度而变化,则表明晶圆上有切口。非零晶圆切口会导致 Omega 峰位随着晶圆旋转而增加或减少,因为晶面与晶圆表面并不完全平行。当晶圆旋转到平面朝向 X 射线束倾斜到最大值时,Omega 衍射峰将位于比布拉格角低一个角度,该角度的幅度等于切口的大小。例如,朝向 X 射线束的 1° 切口晶圆的 Omega 峰位将比布拉格角预测的低 1°。同样,如果切口大小相同但相对于光束的方向相反,Omega 峰值的角度将比布拉格角大 1°。当晶圆在光束中旋转时,切口会导致 Omega 峰值从最小值平稳移动到最大值,并且可以观察到 Omega 峰值在这些极限之间的偏移。
基于质谱的蛋白质组学已成为复杂生物样品中蛋白质识别和定量的既定方法,代表了该领域的金标准。在共价药物发现的领域,化学蛋白质组学已成为不可或缺的成分,因为它可以通过蛋白质组学方法通过共价配体诱导的化学修饰映射(Meissner等,2022)。这些技术的成功通过实现高通量和定量分析,彻底改变了现代药物筛查工作。本综述着重于阐明各种定量蛋白质组学技术的原理和方法,包括无标签定量,ITRAQ(用于相对和绝对定量的等速标记)和TMT(tandem质量标签)标签。此外,我们探索了这些工具在定量化学蛋白质组学中的应用,证明了它们在发现共价配体中的实用性。
摘要:β -catenin(CTNNB1)是一种致癌转录因子,在细胞 - 细胞粘附和细胞增殖和存活基因的转录中很重要,可驱动许多不同类型的癌症的发病机理。但是,CTNNB1的直接药理靶向仍然具有挑战性。在这里,我们进行了一个带有半胱氨酸反应性共价配体库的屏幕,以识别以泛素蛋白依赖性依赖性依赖性方式耗尽CTNNB1的单价降解器EN83。我们表明,EN83直接靶向CTNNB1三个半胱氨酸C466,C520和C619,导致CTNNB1的稳定和降解。通过结构优化,我们生成了一个高度有效且相对选择性的不稳定降解器,该降解器通过仅在CTNNB1上的C619靶向起作用。我们的结果表明,化学蛋白质组学方法可用于共价靶向和降解具有不稳定介导的降解(例如CTNNB1)(例如CTNNB1)的具有挑战性的转录因子。■简介
1 蛋白质科学、蛋白质组学和表观遗传信号实验室(PPES)和综合个性化和精准肿瘤学网络(IPPON),安特卫普大学生物医学科学系,Campus Drie Eiken,Universiteitsplein 1,2610 Wilrijk,比利时;chandra.ace@gmail.com(CSC);claudina.pereznovo@uantwerpen.be(CP-N.);kendeclerck90@hotmail.com(KD);ajaypalagani@gmail.com(AP);xaveer.vanostade@uantwerpen.be(XVO)2 安特卫普可持续性和医学应用等离子体实验室(PLASMANT),安特卫普大学化学系,2610 Wilrijk,比利时;priyanka.shaw@uantwerpen.be(PS); annemie.bogaerts@uantwerpen.be (AB) 3 PamGene International BV, 5211 Hertogenbosch, 荷兰;srangarajan@pamgene.com 4 安特卫普生物医学信息学网络(Biomina),安特卫普大学信息学系,2610 Wilrijk,比利时;bart.cuypers@uantwerpen.be (BC);nicolas.deneuter@uantwerpen.be (NDN);kris.laukens@uantwerpen.be (KL) 5 新加坡南洋理工大学李光前医学院淋巴细胞信号研究实验室,新加坡 1308232,新加坡;fazil.turabe@gmail.com (FMHUT);nkverma@ntu.edu.sg (NKV) 6 根特大学内科系血液学系,9000 根特,比利时; fritz.offner@ugent.be 7 根特大学生物分子医学系,9000 根特,比利时;pieter.vanvlierberghe@ugent.be * 通信地址:emilie.logie@uantwerpen.be (EL);wim.vandenberghe@uantwerpen.be (WVB);电话:+32-3265-2318 (EL) † 这些作者对本文的贡献相同。
动态共价键是通过可逆反应形成的,这意味着可以通过改变反应条件(例如温度、pH 值或浓度)来改变反应物和产物之间的平衡。可逆共价键的例子包括亚胺键、二硫键和硼酸酯键。这些键允许创建能够适应和响应外部刺激的材料,从而产生新的特性和功能。三聚体分子通常由于单体单元之间形成额外的化学键而表现出更高的化学稳定性。三聚体分子可以采用特定的结构排列,例如线性、环状或支链构型,具体取决于单体的几何形状和三聚化过程的性质。三聚化用于合成生物活性化合物和药物中间体。与单体相比,三聚体分子可能表现出增强的药理特性。三聚反应有助于生产具有定制特性和功能的高分子量聚合物。三聚体单体