1。jao,J.Y。等。微生物暗物质即将到来:挑战和机遇。国家科学评论8(2021)。2。Rinke,C。等。 对微生物暗物质的系统发育和编码潜力的见解。 自然499,431-437(2013)。 3。 Yarza,P。等。 使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。 自然评论微生物学12,635-645(2014)。 4。 Dykhuizen,D.E。 圣诞老人重新审视:为什么有这么多种细菌? Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。 5。 Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Rinke,C。等。对微生物暗物质的系统发育和编码潜力的见解。自然499,431-437(2013)。3。Yarza,P。等。使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。自然评论微生物学12,635-645(2014)。4。Dykhuizen,D.E。圣诞老人重新审视:为什么有这么多种细菌?Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。5。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。&Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。国际系统和进化微生物学杂志70,5607-5612(2020)。6。Chaffron,S.,Rehrauer,H.,Pernthaler,J.&von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。基因组研究20,947-959(2010)。7。QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。QIN,J.J。等。通过元基因组测序建立的人类肠道微生物基因目录。自然464,59-70(2010)。8。Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Methé,B.A。等。人类微生物组研究的框架。自然486,215-221(2012)。9。lok,C。挖掘微生物暗物质。10。自然522,270-273(2015)。Medema,M.H。,De Rond,T。&Moore,B.S。 采矿基因组阐明了生命的专业化学。 自然评论遗传学22,553-571(2021)。 11。 Pavlopoulos,G.A。 等。 通过全球宏基因组学解开功能性暗物质。 自然622,594-602(2023)。 12。 Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Medema,M.H。,De Rond,T。&Moore,B.S。采矿基因组阐明了生命的专业化学。自然评论遗传学22,553-571(2021)。11。Pavlopoulos,G.A。等。通过全球宏基因组学解开功能性暗物质。自然622,594-602(2023)。12。Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Altae-Tran,H。等。揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Science 382,EADI1910(2023)。13。Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Wilkinson,B。&Micklefield,J。采矿和工程自然产品生物合成途径。自然化学生物学3,379-386(2007)。14。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。天然产品报告40,89-127(2023)。15。Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Goig,G.A。等。直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。柳叶刀微生物1,E175-E183(2020)。16。刘,Y.X。等。微生物组数据的扩增子和宏基因组分析的实用指南。蛋白质和细胞12,315-330(2021)。17。Ustick,L.J。等。宏基因组分析揭示了海洋营养限制的全球规模模式。科学372,287-291(2021)。18。Nissen,J.N。 等。Nissen,J.N。等。使用深层自动编码器改进了元基因组套筒和组装。自然生物技术39,555-560(2021)。
对千人基因组计划样本进行高覆盖率纳米孔测序,以建立人类遗传变异的综合目录 作者 Jonas A. Gustafson 1,2,*, Sophia B. Gibson 1,3,*, Nikhita Damaraju 1,4,*, Miranda PG Zalusky 1 , Kendra Hoekzema 3 , David Twesigomwe 5 , Lei Yang 6 , Anthony A. Snead 7 , Phillip A. Richmond 8 , Wouter De Coster 9,10 , Nathan D. Olson 11 , Andrea Guarracino 12,13 , Qiuhui Li 14 , Angela L. Miller 1 , Joy Goffena 1 , Zachary B. Anderson 1 , Sophie HR Storz 1 , Sydney A. Ward 1 , Maisha Sinha 1 , Claudia Gonzaga-Jauregui 15 、Wayne E. Clarke 16,17 、Anna O. Basile 16 、André Corvelo 16 、Catherine Reeves 16 、Adrienne Helland 16 、Rajeeva Lochan Musunuri 16 、Mahler Revsine 14 、Karynne E. Patterson 3 、Cate R. Paschal 18,19 、Christina Zakarian 3 、Sara Goodwin 20 、Tanner D. Jensen 21 、Esther Robb 22 、1000 基因组 ONT 测序联盟、华盛顿大学罕见疾病研究中心 (UW-CRDR)、阐明罕见疾病遗传学的基因组学研究 (GREGoR) 联盟、W. Richard McCombie 20 、Fritz J. Sedlazeck 23,24,25 , Justin M. Zook 11 , Stephen B. Montgomery 21 , Erik Garrison 12 , Mikhail Kolmogorov 26 , Michael C. Schatz 14 , Richard N. McLaughlin Jr. 2,6 , Harriet Dashnow 27,28 , Michael C. Zody 16 , Matt Loose 29 , Miten Jain 30 , Evan E. Eichler 3,31,32 , Danny E. Miller 1,19,31,** 附属机构 1. 美国华盛顿州西雅图华盛顿大学儿科系遗传医学分部 2. 美国华盛顿大学西雅图分子与细胞生物学项目 3. 美国华盛顿大学基因组科学系 4. 美国华盛顿大学西雅图公共卫生遗传学研究所 5. 悉尼南非约翰内斯堡威特沃特斯兰德大学健康科学学院布伦纳分子生物科学研究所 6. 美国华盛顿州西雅图太平洋西北研究所 7. 美国纽约州纽约纽约大学生物系 8. 美国路易斯安那州巴吞鲁日阿拉米亚健康中心 9. 比利时安特卫普 VIB 分子神经病学中心应用和转化神经基因组学组 10. 比利时安特卫普大学生物医学科学系 11. 美国马里兰州盖瑟斯堡国家标准与技术研究所材料测量实验室 12. 美国田纳西州孟菲斯田纳西大学健康科学中心遗传学、基因组学和信息学系 13. 意大利米兰人类科技城 14. 美国马里兰州巴尔的摩约翰霍普金斯大学计算机科学系 15. 国际人类基因组研究实验室人类基因组研究,墨西哥国立自治大学 16. 纽约基因组中心,美国纽约州纽约市 17. Outlier Informatics Inc.,萨斯卡通,萨斯卡通,加拿大 18. 西雅图儿童医院实验室部,西雅图,华盛顿州,美国 19. 检验医学和病理学部,美国华盛顿大学,美国华盛顿州西雅图 20. 冷泉港实验室,美国纽约州冷泉港 21. 斯坦福大学遗传学系,美国加利福尼亚州斯坦福 22. 斯坦福大学计算机科学系,美国加利福尼亚州斯坦福 23. 贝勒医学院人类基因组测序中心,美国德克萨斯州休斯顿
简介许多国家的目标是通过扩大公共保险来覆盖其人口,以实现财务可持续的普遍健康覆盖范围。1充分的证据表明,健康保险范围可改善财务风险保护和心理健康,但对身体健康的影响不太了解。几项随机对照试验已经调查了美利坚合众国的保险范围。RAND健康保险实验是在1970年代至80年代进行的,其主要目的是研究对医疗服务需求的价格弹性及其对健康结果的影响,但没有研究拥有健康保险本身的效果。2最近,另一项研究使用国税局的随机推广评估了健康保险(包括医疗补助)对死亡率的影响,鼓励个人进行保险范围。3在随访的两年中,他们观察到入学保险的人的死亡率降低,但使用了没有一系列个人健康结果的行政数据。俄勒冈州健康保险实验于2008年启动,并检查了医疗补助(低收入个人公共卫生保险计划)对广泛结果的影响,
我们了解与您当前的需求和预算保持一致的保险计划的重要性。这就是为什么我们超越MSIG Flexico医疗保险的原因。它通过将您放在驾驶员座位上来重新定义健康保护。Flexico Medical适应您的偏好,从提高年度限制到选择适合您在哪里的共同保险条款。无论您是25岁还是65岁,我们都致力于提供全面而灵活的健康保护,以与您一起发展。在MSIG,确保您的医疗保险与您所做的核心一样动态。
Cigna Healthcare 产品和服务由 The Cigna Group 的运营子公司独家提供或通过其提供。Cigna 名称、徽标和标记(包括 THE CIGNA GROUP 和 CIGNA HEALTHCARE)归 Cigna Intellectual Property, Inc. 所有。The Cigna Group 的子公司与 Medicare 签订合同,在部分州和部分州医疗补助计划中提供 Medicare Advantage HMO 和 PPO 计划以及 D 部分处方药计划 (PDP)。Cigna Healthcare 产品的注册取决于合同续签。
方法论每年谁和联合国儿童基金会共同审查成员国向这两个机构提交的报告,这是通过对年度数据收集的免疫报告(EJRF)的联合报告表(EJRF),介绍了国家免疫承保范围,最终调查报告以及已发表的数据和灰色文献。基于这些数据,并适当考虑了潜在的偏见和当地专家的观点,他们和联合国儿童基金会试图区分可用的经验数据准确反映免疫系统绩效的情况以及数据受到损害并可能造成误导性覆盖范围的误导性观点,同时估算每个国家的最大范围,同时估计了以下年度的范围,因为该国的范围是自1980年以来的年度和不合格。也就是说,每个国家的数据都会单独审查,并且在没有数据的情况下,数据不会从其他国家借来。估计不是基于对报告数据的临时调整;在某些情况下,可以从单个来源(通常是全国报道的覆盖范围数据)获得经验数据。如果没有针对给定国家/疫苗/年组合的数据可用的情况,则从早期和后期考虑数据,并插值(或推销)以估算丢失年份的覆盖范围。在混合数据源并显示出较大变化的情况下,试图通过考虑可用数据中可能的偏见来确定最可能的估计。在2020 - 2021年期间,由于1920 - 2021年间大流行时,免疫系统绩效数据收集后,来自国家的反应水平得到改善,
作为我们的过量和盈余产品的一部分,慕尼黑专长为北美的独特,难以占地的风险提供了商业物业覆盖范围。我们广泛的风险食欲和承保专业知识使我们能够为日常商业风险以及灾难驱动的风险提供广泛的保险解决方案。我们还具有快速和创造性的响应,以适应市场周期。
在监督学习问题中的摘要,鉴于预测的值是某些训练有素的模型的输出,我们如何量化围绕此预测的不确定性?无分布的预测推论旨在围绕此输出构建预测间隔,有效覆盖范围不依赖于数据分布或模型培训算法的性质的假设。在该领域的现有方法,包括保形预测和折刀+,提供了略有保证的理论保证(即,在培训和测试数据中平均而言)。相比之下,培训条件覆盖范围是更强的有效性概念,可确保大多数训练数据的测试点的预测覆盖范围,因此在实践中是更理想的属性。Vovk [2012]表明了培训条件覆盖范围,以持有分裂的共形方法,但Bian和Barber [2023]的最新工作证明,对于没有进一步假设的完整的子状和折刀+方法,无法使用这种有效性保证。在本文中,我们表明算法稳定性的假设可确保训练条件覆盖属性具有完整的保形和折刀+方法。
CDC 行动呼吁:学校可以采取哪些措施促进学龄儿童补种疫苗 幼儿园儿童的疫苗接种覆盖率仍处于几十年来的最低水平,在疫情爆发后的两个学年里,全国范围内的疫苗接种覆盖率从 95% 下降到 93%,某些地区下降幅度高达 10 个百分点。这意味着在疫情期间进入幼儿园的多达 75 万名幼儿可能感染可通过疫苗预防的疾病。自 2019-2020 学年以来,6 个月至 17 岁儿童的流感疫苗接种覆盖率也下降了 5 个百分点以上。 2024 年,美国各社区正在应对儿童住院麻疹病例和疫情的上升,强调未接种疫苗和未接种疫苗的儿童面临患上严重疾病的风险。疫苗接种覆盖率下降,加上麻疹等疫苗可预防疾病病例增加,反过来又使学生患病和缺课的风险更大。常规疫苗接种是让孩子保持健康、上学和准备学习的好方法。疫苗可以通过以下方式优化学生健康:
我什么时候可以参加市场覆盖范围?通过您的雇主失去承保范围,开设了“特殊入学期间”。您从覆盖终止日期开始有60天的时间来注册市场覆盖范围。否则,您必须等待在“开放式入学期间”期间注册。如果您决定注册市场覆盖范围,则在任何情况下都不能切换回眼镜蛇。,一旦您在眼镜蛇下用尽了覆盖范围,或者由于特殊事件而覆盖范围后,您可以切换到市场覆盖范围。这将打开一个额外的“特殊入学”期,并允许您在“公开注册”之外注册。