未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于4月29日,2024年。; https://doi.org/10.1101/2024.04.26.591412 doi:biorxiv Preprint
图2。Kulen气象站的气象条件(位于图1),在2022年4月10日至2023年4月10日的地面高度为2.2米的高度。(a) Daily mean air temperature ( T air , °C), (b) daily total precipitation ( P , mm), (c) daily mean global radiation ( Rg , W m -2 ), (d) daily mean relative humidity ( RH , %), (e) daily mean vapour pressure deficit ( VPD , kPa), and (f) daily mean wind speed ( WS , m s -1 ).所有地块中垂直虚线区域突出了雨季期
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月1日。; https://doi.org/10.1101/2024.03.27.583983 doi:biorxiv Preprint
这些信息和任何技术或其他建议是真诚地提出的,并且据信在准备之日起是正确的。此信息和建议的收件人必须对其目的的适用性做出自己的决心。在任何情况下,Evonik均不承担任何因使用或依赖此信息和建议而造成的损害或损失。evonik明确拒绝任何形式的任何陈述和保证,无论是明示的还是暗示的,就特定目的的准确性,完整性,非侵权,非侵权性,适销性和适合性(即使Evonik意识到了此类目的),涉及提供的任何信息和建议。引用其他公司使用的任何商品名称既不是建议,也不是对相应产品的认可,也不暗示无法使用类似产品。evonik保留随时或随后通知的任何时间对信息和/或建议进行任何更改的权利。acematt®,Addid®,Aerosil®,Airase®,Albidur®,Carbowet®,Dynol™,Nanocryl®,Silikoftal®,Silikophen®,Silikophen®,Silikopon®,Silikopur®,Silikopur®,Silikopur®,Silikotop®,Silikotop®,Sipernat®,Sipernat®,Surfynol® ®是Evonik Industries或其子公司的注册商标。Evonik支持您选择最适合的产品并通过我们的应用技术组优化当前配方。
增强子-基因通讯依赖于拓扑关联域 (TAD) 和由 CCCTC 结合因子 (CTCF) 绝缘子强制执行的边界,但其潜在的结构和机制仍然存在争议。在这里,我们研究了一种通常隔离成纤维细胞生长因子 (FGF) 致癌基因但在胃肠道间质瘤 (GIST) 中被 DNA 高甲基化破坏的边界。该边界包含一系列 CTCF 位点,可强制相邻的 TAD,一个包含 FGF 基因,另一个包含 ANO1 及其推定的增强子,它们在 GIST 及其可能的起源细胞中具有特异性活性。我们表明,边界中四个 CTCF 基序的协调破坏会融合相邻的 TAD,允许 ANO1 增强子接触 FGF3,并导致其强烈诱导。高分辨率微 C 图揭示了 ANO1 增强子和 FGF3 启动子中的转录起始位点之间的特定接触,这种接触与 FGF3 诱导呈定量关系,因此接触频率的适度变化会导致表达的强烈变化,与因果关系一致。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2024年2月29日。 https://doi.org/10.1101/2024.02.27.582333 doi:Biorxiv Preprint
此预印本的版权所有者此版本于 2024 年 2 月 8 日发布。;https://doi.org/10.1101/2024.02.07.24302406 doi: medRxiv preprint
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审证明)提供的,他已授予Biorxiv的许可证,以在2024年2月1日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2023.10.30.564663 doi:Biorxiv Preprint
微生物细胞工厂。学生将能够设计和开展实验,使用最新的工具和技术来生成新型菌株,这些菌株既可以生产燃料、化学品和材料,也可以修复污染或作为食品消费,然后制定计划将其解决方案扩大到工业流程。鼓励学生创造性和创新性地思考气候变化和可持续性等重大挑战,然后设计新颖的生物系统和过程来应对这些挑战。该课程还旨在灌输强烈的道德责任感和对生物技术进步的社会影响的理解。包含基于团队的学期项目将让学生接触跨学科解决问题并促进协作思维。学习成果在课程结束时,学生将能够:
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年1月20日。 https://doi.org/10.1101/2024.01.17.576037 doi:Biorxiv Preprint