开放访问本文是在创意共享归因非商业 - 非商业化4.0国际许可下获得许可的,该许可允许任何非商业用途,共享,分发和复制任何中等或格式,只要您与原始作者提供适当的信誉,并为您提供了与创造性共享许可的链接,并指出了您的构建实体,并指明了材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。
CRISPR 技术是研究基因组功能的强大工具。为了帮助从众多可能的选项中挑选出对目标靶标具有最大功效的 sgRNA,几个研究小组开发了预测 sgRNA 靶向活性的模型。尽管多种 tracrRNA 变体通常用于筛选,但现有的模型在提名 sgRNA 时都没有考虑到这一特征。在这里,我们开发了一个靶向模型,规则集 3,它可以对多种 tracrRNA 变体做出最佳预测。我们在一个新的 sgRNA 数据集上验证了规则集 3,该数据集涵盖了必需和非必需基因,与之前的预测模型相比有显著的改进。通过分析 tracrRNA 变体之间 sgRNA 活性的差异,我们表明 Pol III 转录终止是 sgRNA 活性的重要决定因素。我们期望这些结果能够提高 CRISPR 筛选的性能,并为未来对 tracrRNA 工程和 sgRNA 建模的研究提供参考。
摘要 近 90% 的人类致病突变是由微小的基因变异引起的,有效纠正这些错误的方法至关重要。进行微小 DNA 改变的一种方法是提供单链寡脱氧核苷酸 (ssODN),该单链寡脱氧核苷酸包含一个改变,并在基因组的目标位点处与靶向双链断裂 (DSB) 相结合。将 ssODN 供体与 CRISPR-Cas9 介导的 DSB 结合是引入微小改变的最简化方法之一。然而,在许多系统中,这种方法效率低下,并且会在基因连接处引入不精确的修复。我们在此报告一种使用 ssODN 和 CRISPR-Cas9 的时空定位来改进基因改变的技术。我们表明,通过将 ssODN 模板与反式激活 RNA (tracrRNA) 融合,我们可以恢复精确的基因改变,并且在体外和体内的整合度和精确度都有所提高。最后,我们表明该技术可用于与其他基因编辑工具(如转录激活因子如效应核酸酶)一起增强基因转换。
凌欣宇, 1 , 5 常丽英, 1 , 5 陈鹤琪, 1 高晓琴, 1 尹建航, 2 , 3 左毅, 1 黄玉佳, 1 张波, 4 胡佳芝, 2 , 3 和刘涛 1 , 6 , * 1 北京大学药学院天然药物及仿生药物国家重点实验室, 北京市海淀区学院路 38 号, 100191, 中国 2 北京大学生命科学学院细胞增殖分化教育部重点实验室, 基因组编辑研究中心, 北京 100871, 中国 3 北京大学北大-清华生命科学联合中心, 北京 100871, 中国 4 中国医学科学院北京协和医学院北京协和医院医学研究中心, 北京 100730, 中国 5 上述作者贡献相同 6 主要联系人*通讯地址:taoliupku@pku.edu.cn https://doi.org/10.1016/j.molcel.2021.09.021
选项2:使用Hibit印迹确认全长蛋白的表达。取编辑的细胞样品,并用首选缓冲液裂解。在凝胶上运行样品,将蛋白质转移到膜上并使用纳米-Glo®Hibit印迹系统检测。使用未经编辑的细胞作为背景的负面对照。