无论是军用飞机还是民用飞机,提供足够的热管理都变得越来越具有挑战性。这是由于机载热负荷的量级显著增加,也是由于其性质的变化,例如存在更多低品位、高热通量热源,以及一些废热无法作为发动机废气的一部分排出。复合材料使用的增加提出了另一个需要解决的问题,因为这些材料在将废热从飞机转移到周围大气方面不如金属材料有效。这些热管理挑战非常严峻,以至于它们正在成为提高飞机性能和效率的主要障碍之一。在这篇评论中,我们将阐述这些挑战,以及文献中可能的解决方案和机会。在介绍来自周围环境的相关因素后,对挑战和机遇的讨论将通过对热管理系统中涉及的元素进行简单分类来指导。这些元素包括热源、热获取机制、热传输系统、向散热器的散热以及能量转换和存储。热源包括来自推进系统和机身系统的热源。热获取机制是从热源获取热能的手段。热传输系统包括冷却回路和热力学循环,以及相关组件和流体,它们将热量从热源移动到散热器,可能经过很长的距离。终端飞机散热器包括大气、燃料和飞机结构。除了讨论热管理系统的这些不同元素外,还详细讨论了飞机热管理研究中几个特别优先的主题。这些主题包括电力推进飞机、超高涵道比齿轮传动涡扇发动机和高功率机载军用系统的热管理;环境控制系统;动力和热管理系统;超音速运输机的热管理;以及热管理的新型建模和仿真过程和工具。
[1] Siegmund 等人。通过功能性磁共振成像理解源代码。(2014 年)。[2] Huang 等人。使用 fMRI 和 fNIRS 提取数据结构操作的神经表征。(2019 年)。[3] Peitek 等人。程序理解和代码复杂度指标:一项 fMRI 研究。(2021 年)。[4] Krueger 等人。神经鸿沟:一项关于散文和代码写作的 fMRI 研究。(2020 年)
尽管磁共振成像(MRI)对脑肿瘤分割和发现非常有帮助,但它在临床实践中缺乏某些方式。作为一种态度,预测绩效的退化是不可避免的。根据当前的实现,在模态特征的训练过程中,不同的模式被认为是独立的,彼此之间是独立的,但是它们是互补的。在本文中,考虑到不同方式对各种肿瘤区域的敏感性,我们提出了一种意识到类别的G组大量学习框架(称为GSS),以弥补本性模态模态提取阶段的信息。确切地说,在每个预测类别中,所有模态的预测构成了一个组,其中选择了最出色的灵敏度的预测作为组领导者。小组领导者与成员之间的合作努力以高的一致性和确定性为基础。作为我们的次要贡献,我们引入了一个随机面具,以减少可能的偏见。GSS采用标准培训策略而无需具体的建筑选择,因此可以轻松地插入现有的全模式内脑肿瘤分段中。在BRATS2020,BRATS2018和BRATS2015数据集上进行了明显的,广泛的实验表明,GSS可以平均证明现有的SOTA算法的性能平均为1.27-3.20%。该代码在https://github.com/qysgithubopen/gss上发布。
aeroindia.gov.in › Updated_assets PDF 2023 年 2 月 13 日 — 2023 年 2 月 13 日 “Netra”编队将有 5 架飞机,它们将作为箭头编队运行,...作为宽松静态稳定性、数字飞行编队线控(FBW)、飞行控制...
1. 时期框架 ................................................................................................................ 4 构建经济模型 .............................................................................................................................. 6 2. 技术及其在行业中的判断作用 ........................................................................................ 7 将街机带回家 ............................................................................................................................ 8 视频游戏机中的微控制器应用 ............................................................................................. 10 微观经济视角 – 任天堂和 Epoch 的决策树 ............................................................................. 11 可编程卡带革命 ............................................................................................................. 12 不同的技术意味着不同的竞争 ............................................................................................. 13 3. 崩溃 ............................................................................................................. 15 3.1 1977 年“被遗忘的”视频游戏崩溃 ........................................................................ 15 微观经济视角 – 伯特兰竞争与无差别的经济坏处 ........................................................................ 15 3.2 1983 年“大”视频游戏崩溃 ........................................................................................ 17 营销泡沫 ............................................................................................................................. 17 非理性乐观和管理不善 ................................................................................................................ 19 微观经济视角——供应过剩 .......................................................................................................... 19 失去出版控制权:不受约束的竞争和市场过度饱和 ........................................................ 20 家用电脑作为视频游戏机的替代品 ...................................................................................... 21 日本半导体产业的崛起:芯片竞赛和主场比赛 ............................................................. 22 微观经济视角——世嘉和任天堂的收益矩阵 ...................................................................... 24 改变行业的争议芯片 ...................................................................................................... 26 4. 负外部性和半导体短缺 ............................................................................. 28 4.1 1988 年的芯片饥荒 ............................................................................................. 28 微观经济视角——1986 年的半导体贸易协定 ............................................................................. 28 4.2 COVID-19 大流行和 2020 年的芯片饥荒 ............................................................. 30 结论 ............................................................................................................. 31 参考书目 ........................................................................................................................... 33 其他参考书目 ...................................................................................................................... 35
摘要NASA Ingenuity直升机的成功承诺,未来对火星的探索将包括与流浪者和着陆器一致的Aerobots。但是,由于其小而基本的设计,Ingenuity缺乏远程耐力和科学有效载荷能力。在一系列优化的火星无人机概念开发中,我们在本文中介绍了基于旋转EVTOL设计配置的初始尺寸,基于对悬停和垂直攀爬的执行参数分析,使用简化的Rotorcraft Momentum理论,用于一组更具挑战性的Martian Aerobot Mission,并符合最大的SpaceCraft Airoshell Limit lim Limit spacececraft Airsherlaft Airoshell Limit limimimep。发现串联转子构型是最有效的配置,而传统的单个主转子配置具有小直径,表现出最差的性能。
根据美国劳工统计局的数据,“一项被广泛引用和效仿的研究表明,2010 年至 2030 年期间,美国 47% 的工作面临被自动化取代的风险” [2] 皮尤研究中心在 2023 年 7 月的一份报告中指出,“19% 的美国工人从事的工作最容易受到人工智能的影响,其中最重要的活动可能会被人工智能取代或辅助”和“人工智能接触程度高的工作往往是薪酬较高的领域,而大学教育和分析技能可以成为加分项” [3]。如果高等教育的主要目的是为学生的终身职业生涯做好准备,那么这些统计数据和预测就不容忽视——大学需要帮助学生为这一现实以及新的与人工智能相关的工作做好准备;许多新的工作领域和行业尚不存在。
由 Emerald 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/AEAT-07-2022-0197。请参阅任何适用的出版商使用条款。
