科学秘书Petr Sladek先生物理和化学科学系核科学与应用部国际原子能局维也纳国际中心邮政信箱1001400维也纳奥地利电话。:+43 1 2600 28622传真:+43 1 26007电子邮件:p.sladek@iaea.org行政秘书Gaukhar Permetova女士物理和化学科学核科学和应用程序部国际原子能委员会Vienna Internation Antienna Internation Internation Internation Internation International International International Center Po Box 1400 Vienna vienna vienna oftienna Outhia。:+43 1 2600 28227传真:+43 1 26007电子邮件:g.permetova@iaea.org
潜在用途包括携带货物,伤亡疏散,侦察,化学药品检测,通信和火灾支持。但是,理想用途和当前技术能力之间的差距很大。将系统传递到将要使用的地方,一旦到达那里的现实用途,而机器与士兵的互动经常被不受欢迎,但对于UGS将如何构成陆军并提供真正的运营优势至关重要。UGS的技术局限性必须反映在土地部队内部的任务组织中。必须考虑UGS将如何在战场上移动,因为通常不会出于自己的蒸汽。UGS的维护和维修将需要新的培训课程,并与工业合作伙伴建立密切的关系。
摘要本文研究了机器学习的应用(ML)方法在螺丝驾驶操作中的时间序列数据中的异常检测方法,这是制造业中关键的过程。利用一个新颖的开放访问现实世界数据集,我们探讨了几种无监督和监督的ML模型的功效。在无监督的模型中,DBSCAN以96.68%的精度和90.70%的宏F1得分表现出最佳性能。在监督模型中,随机森林分类器擅长于99.02%的精度,宏F1得分为98.36%。这些结果不仅强调了ML在提高制造质量和效率方面的潜力,而且还强调了其实际部署的挑战。这项研究鼓励对工业异常检测的ML技术进行进一步的研究和完善,从而有助于提高弹性,高效和可持续的制造过程。包括完整数据集以及基于Python的脚本的整个分析是通过专用存储库公开提供的。这种对开放科学的承诺旨在支持我们工作的实际应用和未来改编,以支持质量管理和制造业中的业务决策。关键字:异常检测,螺丝驾驶操作,收紧过程,监督学习,无监督学习。
然而,我们注意到,判决书并未准确反映指控的处理结果。判决书错误地指出上诉人的监禁期为 30 天而不是 90 天,并将上诉人的等级列为 E-1 而不是 E-6。虽然我们认为没有偏见,但上诉人有权获得正确反映其诉讼内容的军事法庭记录。2 根据军事法庭规则 1111(c)(2),我们修改判决书并指示将其纳入记录。
在飞机维护中,绝大多数目视检查旨在查找机身上的缺陷或异常。这些检测很容易受到人工操作的错误影响。由于空中交通量不断增长以及商业航班时刻表对飞机利用率的要求不断提高,对维护操作的按时完成的压力越来越大,因此对员工的压力也越来越大 (Marx and Graeber, 1994) (Drury, 1999)。自 1990 年代以来,人们一直在研究使用机器人自动进行飞机外部检查。目的通常是帮助维护技术人员进行诊断并提高维护报告中缺陷和损坏的可追溯性。最初的机器人解决方案专注于外部表面蒙皮检查,机器人在飞机上爬行。尽管概念验证有效,但实际部署仍存在一些局限性 (Davis and Siegel, 1993) (Siegel 等, 1993) (Backes 等, 1997) (Siegel, 1997) (Siegel 等, 1998)。2010 年代初,一种名为 Air-Cobot 的轮式协作移动机器人问世。它能够在包含一些需要避开的障碍物的环境中安全地围绕飞机移动 (Futterlieb 等, 2014) (Frejaville 等, 2016) (Bauda 等, 2017) (Futterlieb, 2017) (Lakrouf 等, 2017)。两个传感器专用于检查。使用平移倾斜变焦摄像机,可以进行一些检查
在飞机维护中,绝大多数目视检查旨在发现机身上的缺陷或异常。这些检测很容易受到人工操作员的错误影响。由于空中交通量不断增长,并且由于商业航班时刻表对飞机利用率的要求不断提高,因此对维护操作的按时压力更大,从而对劳动力的压力也更大(Marx and Graeber,1994)(Drury,1999)。自 1990 年代以来,人们一直在研究使用机器人自动进行飞机外部检查。目的通常是帮助维护技术人员进行诊断并提高维护报告中缺陷和损坏的可追溯性。第一个机器人解决方案专注于外部表面蒙皮检查,机器人在飞机上爬行。尽管概念验证有效,但实际部署仍存在一些局限性(Davis 和 Siegel,1993 年)(Siegel 等人,1993 年)(Backes 等人,1997 年)(Siegel,1997 年)(Siegel 等人,1998 年)。2010 年代初,一款名为 Air-Cobot 的轮式协作移动机器人问世。它能够在包含一些需要避免的障碍物的环境中安全地围绕飞机发展(Futterlieb 等人,2014 年)(Frejaville 等人,2016 年)(Bauda 等人,2017 年)(Futterlieb,2017 年)(Lakrouf 等人,2017 年)。两个传感器专用于检查。使用平移倾斜变焦摄像机,可以进行一些检查
在制造新飞机时,必须投入大量时间进行机组人员工作场所的开发和研究。飞机有效运行的最重要方面之一是飞机的技术能力与机组人员与所有飞机系统无缝交互的能力的结合。飞机机舱的正确工程和心理人体工程学设计有助于实现完美的互动。控制装置的合理位置提高了飞行员的能力,进而影响了整个飞机的正常运转。机组人员工作站的设计和布局是一个复杂的过程,在此过程中要考虑大量不同的因素,这些因素可能会妨碍飞行员有效地完成工作。在驾驶舱开发中,工程和心理设计的主要任务是确保机组人员在驾驶舱中的工作尽可能舒适,并且在执行飞行任务时不会有任何东西分散机组人员的注意力。驾驶舱中使用了大量不同的仪器和控制装置,每个仪器和控制装置都应该各归其位。所有这些都形成了一个信息和控制场,飞行员通过它与飞机进行交互。到目前为止,正在开发新的、有前景的信息输入和接收方式,例如:使用语音命令进行控制、凝视控制、使用神经接口读取大脑活动。所有这些都将有助于在未来减少
2 选择指南 ..................................................................20 技术概念 ..................................................................21 Ewellix 滚柱丝杠简介 ..............................................21 基本动态承载能力 Ca ..............................................21 公称疲劳寿命 L10 ..............................................................21 使用寿命 ..............................................................................22 当量动态载荷 Fm ......................................................22 基本静态承载能力 C0a ......................................................22 丝杠轴的临界转速 ncr .............................................23 允许的速度限制 (n d0) 和加速度 .............................................................23 效率 η .............................................................................24 反向驱动和制动扭矩 Tb .............................................................................25 脱离扭矩 Tx .............................................................................25 驱动扭矩 Tt .............................................................................25 静态轴向刚度 Rt .............................................................................25 材料、热处理和涂层 .............................................................26 工作温度 .............................................................................27 丝杠轴屈曲或柱强度 Fc .............................................................27 轴设计 .............................................................
2 选择指南..................................................................20 技术概念....................................................................21 Ewellix 滚柱丝杠简介...............................................21 基本动态承载能力 Ca........................................21 公称疲劳寿命 L10.........................................................................21 使用寿命....................................................................22 当量动态载荷 Fm.............................................................22 基本静态承载能力 C0a.........................................................22 丝杠轴的临界转速 ncr.........................................................23 允许的速度限制 (n d0) 和加速度.........................................................23 效率 η.............................................................................24 反向驱动和制动扭矩 Tb.............................................................................25 脱离扭矩 Tx.............................................................................25 驱动扭矩 Tt.............................................................................25 静态轴向刚度 Rt.............................................................................25 材料、热处理和涂层.............................................................26 工作温度.............................................................................27 丝杠轴屈曲或柱强度 Fc.............................................................27 轴设计.............................................................................28 产品检验和认证.............................................................29 工作环境.................................................................29 轴向游隙和预紧...............................................................30 轴向游隙和预紧...............................................................30 预紧和刚度...............................................................30 预紧扭矩 Tpr................................................................32 预紧扭矩公差...............................................................32 预紧调整.......................................................................34 导程精度和制造公差....................................................36 导程精度....................................................................36 制造公差....................................................................40 计算公式....................................................................44 计算示例....................................................................47
显然,飞行员需要更多地了解如何最好地管理驾驶舱中可用的所有资源,包括其他机组人员、程序、机器界面和他们自己(即认识到他们最脆弱的地方以及他们的优势是什么)。这种资源管理是 CRM 培训的最初本质(因此得名)。许多被确定为支持飞行员在此过程中所必需的要素都是从管理领域或心理学和人为因素 (HF) 的萌芽科学中借鉴而来的。例如沟通、个性、错误、决策和领导力。其他元素来自常见的航空实践(例如“飞行员技能”和“机长”)。