• 无需额外安装成本。 • 节省占地面积。 • 使用节能环保的制冷剂 R410A,降低运营成本并确保零臭氧消耗。 • 低压降热交换器横流技术,节省能源和成本。 • 由于无损冷凝水排放,压缩空气零浪费。 • 先进的控制功能可确保在任何情况下空气干燥,并防止低负荷时结冰。 • 压力露点为 3°C/37°F(20°C/68°F 时相对湿度为 100%)。
20 世纪 80 年代初,在海上靶场和空域警戒区 W-133/W-134 和 W-157A/W-l58C 进行了广泛的空战机动 (ACM) 训练,使用训练导弹和机枪对付无人机和拖曳目标。目标并未模拟真实的空战条件,即目标采取高性能飞机能够采取的所有规避行动。这些不是仪表空域,因此训练受到限制,因为无法进行评分或任务后重建。FY-86 MILCON 项目 P210(2630 万美元)授权在佐治亚州近海建造八座塔楼,以使战术机组战斗训练系统 (TACTS) 能够在从海平面到 60,000 英尺的空战训练演习期间准确监视和控制飞机。 TACTS 包括四个主要子系统:飞机仪表子系统 (AIS)、跟踪仪表子系统 (TIS)、控制和计算子系统 (CCS) 以及显示和汇报子系统 (DDS)。FPO-1 负责 CTACTS 海上塔的设计和建造,海军航空系统司令部提供设施要求。FPO-1 与 Brown & Root Development Inc. (B&R) 签订了合同,担任主要 AE。B&R 使用 Ocean Weather 进行气象和海洋工作,使用 McClelland Engineers, Inc. 进行地球物理和岩土工作。此外,FPO-1 还与 Earl and Wright Consulting Engineers 签订了合同,他们为该项目提供设计质量保证 (DQA)。无人塔将位于南卡罗来纳州查尔斯顿以南约 80 英里处,北乔治亚州以东约 60 英里处,如下图所示。有两个主站,配有共置遥控器和六个远程站。其中一个远程结构除了支持 TIS 远程电子设备(中继/远程)外,还支持微波中继设备。主结构支持两个抛物面天线、一个用于电子设备的防水/防风雨封闭区域、约 24,000 磅的电池和相关设备、一个独立的混合太阳能和风能系统、带燃料储存的备用柴油发电机组和一个直升机场。中继/远程结构支持两个抛物面天线、电池、发电机和直升机场。远程结构支持两个抛物面天线、光伏板、电池和一个直升机场。最终设计于 1985 年 8 月完成,塔的配置如下所示。八个海洋结构中的每一个都由管状钢空间框架模板、上部结构和桩组成。桩的总长度超过 6,000 英尺。所有八个平台的总钢吨位约为 7,000 吨。
目的 本研究旨在评估一种新型人工智能 (AI) 模型在骨质疏松患者中识别具有更高骨矿物质密度 (BMD) 和更高拉出力 (POF) 的优化椎弓根螺钉轨迹的能力。方法使用 3D 图形搜索和基于 AI 的有限元分析模型开发了一种创新的椎弓根螺钉轨迹规划系统(称为 Bone's Trajectory)。回顾性分析了 21 名老年骨质疏松患者术前 CT 扫描。AI 模型自动计算替代椎弓根轨迹的数量、轨迹 BMD 和估计的 L3-5 POF。记录优化轨迹的最高 BMD 和最高 POF,并将其与 AO 标准轨迹进行比较。结果 患者平均年龄为 69.6 ± 7.8 岁,平均椎体 BMD 为 55.9 ± 17.1 mg/ml。在 L3–5 的两侧,优化轨迹的 BMD 和 POF 明显高于 AO 标准轨迹(p < 0.05)。平均而言,优化轨迹螺钉的 POF 至少比 AO 轨迹螺钉增加 2.0 倍。结论 新型 AI 模型在选择 BMD 和 POF 高于 AO 标准轨迹的优化椎弓根轨迹方面表现良好。
目的 本研究旨在评估一种新型人工智能 (AI) 模型在骨质疏松患者中识别具有更高骨矿物质密度 (BMD) 和更高拉出力 (POF) 的优化椎弓根螺钉轨迹的能力。方法 使用 3D 图形搜索和基于 AI 的有限元分析模型开发了一种创新的椎弓根螺钉轨迹规划系统,称为骨轨迹。回顾性分析了 21 名老年骨质疏松患者的术前 CT 扫描。AI 模型自动计算替代椎弓根轨迹的数量、轨迹 BMD 和 L3-5 的估计 POF。记录优化轨迹的最高 BMD 和最高 POF,并与 AO 标准轨迹进行比较。结果 患者平均年龄为 69.6 ± 7.8 岁,椎体平均 BMD 为 55.9 ± 17.1 mg/ml。在 L3–5 两侧,优化轨迹的 BMD 和 POF 均显著高于 AO 标准轨迹(p < 0.05)。平均而言,优化轨迹螺钉的 POF 与 AO 轨迹螺钉相比至少增加了 2.0 倍。结论 新型 AI 模型在选择比 AO 标准轨迹具有更高 BMD 和 POF 的优化椎弓根轨迹方面表现良好。
我声明: • 本表中的信息涵盖船上每个人(包括船长)的 COVID-19 疫苗接种状况。 • 本表中提供的信息完整、正确且最新。 • 我理解向澳大利亚政府提供虚假或误导性信息是严重违法行为。 • 本表(包括隐私通知和同意和声明)已提供给船上每个人阅读。 • 船上每个人都授权我代表他们行事,包括同意和声明上述事项。 • 每个人都同意部门(包括 ABF)从我这里收集他们的信息。 • 每个人都同意将他们的信息提供给我(如果我在海外,该人理解部门(包括 ABF)没有采取任何措施确保我遵守澳大利亚隐私原则)。 • 每个人都同意本表中描述的所有其他相关信息的收集、使用和披露。
摘要 近几十年来,各个领域(航空业、公共交通)的综合车辆和机组人员调度取得了长足进步。随着信息和通信技术以及通用求解器的不断改进,可以制定出这些问题越来越丰富的版本。在公共交通中,排班、延迟传播或休息日模式等问题已成为这些综合问题的一部分。在本文中,我们旨在重新审视早期结合休息日模式的公式,并研究现在是否可以使用标准求解器进行求解,以及在多大程度上结合其他方面可以使问题设置更加丰富,同时仍然保持可能的可解性。这尤其包括延迟传播等问题,在公共交通中,延迟传播通常指(主要)干扰后的二次延迟。此外,我们研究了一个强大的版本来支持增加丰富性是可能的说法。提供了数值结果来强调预期的进展。
船边设施:飞机可以配备 CRM 和 SMB,而无需减少运输能力或使用位置 1 D。CRM 的船边设施(系统和电气)位于检修门后面的天花板上。SMB 的船边设施不会影响货物装载系统或锁。驾驶舱控制装置和设施都包含在 P 5 面板中。
船边设施:飞机可以配备 CRM 和 SMB,而无需减少运输能力或使用位置 1 D。CRM 的船边设施(系统和电气)位于检修门后面的天花板上。SMB 的船边设施不会影响货物装载系统或锁。驾驶舱控制装置和设施都包含在 P 5 面板中。
船边设施:飞机可以配备 CRM 和 SMB,而无需消除运输能力或位置 1 D 的使用。CRM 的船边设施(系统和电气)位于检修门后面的天花板上。SMB 的船边设施不会影响货物装载系统或锁。驾驶舱控制和设施都包含在 P 5 面板中。