摘要:紧急能源转换需要在世界能量组合中更好地渗透可再生能源。可再生能源的间歇性需要使用长期存储。目前的系统在衬里的岩石洞穴或空中加压容器中使用水位,作为压缩机的虚拟活塞和扩张器在二氧化碳热泵周期(HPC)中的功能以及有机跨威奇周期(OTC)。在不可渗透的膜中,二氧化碳被压缩和扩展,通过填充和排空泵送的氢水。二氧化碳用两个大气热存储坑交换热量。当需要电力时,当可再生能源可用并被OTC释放时,HPC充电热流体和冰坑。建立了一个数值模型,以复制系统的损失并计算其往返效率(RTE)。随后的参数研究突出了用于大小和优化的关键参数。预期的RTE约为70%,该CO 2 PHE(泵送式电动电力存储)以及PTE(抽水热量储能)可以通过允许间歇性可再生能源的效率存储以及与地区供暖和冷却网络的整合(以及CIES CIES CIES和CITY coity corcient and Cermuty of Future of Fureture of Future of Future of Future of Future of future future。
1 Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany, 2 Center for Genomic Regulation, Centro Nacional de An ´alisis Gen ´omico, Barcelona 08028, Spain, 3 Department of Gynaecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel,基尔24105,德国,4勒中心,d'Erence,d'Ennovation,d'Expertance et transpert(crefix),PFMG 2025,´evry 91057,法国5,5中心国家de recherche en g'eng en g·eNomique humaine(Cnrgh)巴黎 - 萨克莱,“法国Evry 91057,6,6诊断与研究中心,分子生物医学中心,诊断与研究研究所,格拉兹医科大学,格拉兹医科大学,格拉斯8010,奥地利7号,奥地利7,大学医疗中心Schleswig-Holstein,Schleswig-Holstein,Kiel Kiel Kiel Kiel,Kiel Kiel 24105,surrying surrying,8 Noregian Pssrant forserpl of Norigian Pss toprant of Norigian Pressurant of Norigian Pressurant of Norigian Pressuration。奥斯陆大学医院Rikshospitalet,奥斯陆0372,挪威9号胃肠病学部分,奥斯陆大学医院Rikshospitalet,Oslo 0372,诺斯洛大学,俄勒冈州司法部,俄勒冈大学,司法部,施用疾病和移植,10372 0372, Norway, 11 Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover 30625, Germany, 12 Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany, 13 Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Ludwigsburg 71640, Germany and 14德国罗斯托克大学医学总外科系罗斯托克,罗斯托克
自动驾驶汽车(AVS)在没有人类干预的情况下做出决定。因此,确保AVS的可靠性至关重要。尽管在AV开发方面进行了重大研究和发展,但由于其操作环境的复杂性和无预测性,它们的可靠性仍然是一个重大挑战。基于方案的测试在各种驾驶场景下评估了AVS,但无限数量的潜在方案突出了识别可能违反安全或功能要求的关键场景的重要性。此类要求本质上是相互依存的,需要同时进行测试。为此,我们提出了MOEQT,这是一种新型的多目标增强学习(MORL)的方法,以生成关键场景,同时测试相互依存的安全性和功能要求。MOEQT将包络Q学习作为Morl算法,该算法会动态调整多目标权重以平衡多个目标之间的相对重要性。MOEQT通过动态与AV环境进行动态交互,生成关键场景,以违反多PLE要求,从而确保全面的AV测试。我们使用高级端到端AV控制器和高保真模拟器评估MOEQT,并将MOEQT与两个基准进行比较:随机策略和具有加权奖励函数的单对象RL。我们的评估结果表明,MOEQT在确定违反多个要求的关键方案方面取得了更好的表现。
”鉴于越来越多的证据表明乳酸在生理和病理条件下提供了各种细胞类型的信号调节功能,我们假设乳酸通过改变全面的基因表达来影响神经元功能,” Toohoku Nagatomi教授从Toohoku University的Ryoichi Nagatomi教授和研究团队研究生院以及研究团队研究生院与PH。来自东京医学和牙科大学的学生Yidan Xu和Joji Kusuyama副教授。
ENI公司联系人:新闻办公室:电话。+39.0252031875 – +39.0659822030 Freephone for shareholders (from Italy): 800940924 Freephone for shareholders (from abroad): +39.800 11 22 34 56 Switchboard: +39.0659821 ufficio.stampa@eni.com segreteriasocietaria.azionisti@eni.com investor.relations@eni.com网站:www.eni.com
对气候危机的生态技术修复使某些资源(例如锂)为“关键”。我们认为,批判性是在社会技术过程中积极产生的,涉及三个相互关联的水平 - 需求,供应和价格认知,与绿色提取主义相关的政策以及围绕商品在发展中作用的叙述。批判性与全球生产网络(GPN)的公司战略以及金融参与者的策略相关,将灌注主义合法化以实现可持续性转型。我们强调了金融参与者和利益在实现锂扩展方面的作用,并评估了两个渠道,金融参与者塑造了生产者战略和GPN的渠道 - 融资和价格确定。受到批判性的驱动,金融参与者动员了可持续性金融联系的“绿色”投资故事。这可以通过资助新项目来转移提取前沿,并创建与衍生品市场相关的可变价格设定制度。财务利益为锂提取带来了额外的投机势头,有助于加速繁荣模式和短期主义。从方法论上讲,本文借鉴了行业数据,行业和公司报告,以及对锂行业和伦敦,瑞士,智利和津巴布韦的半结构化访谈。关键词:绿色提取主义,锂,资源的批判性,可持续性金融联系,全球生产网络
“孕妇在流感和SARS-COV-2大流行病和埃博拉病毒流行期间经历了高死亡和危重疾病率。”全球努力需要在大流行病开始之前积极认识并减轻这种风险,而不是一旦开始健康危机,而不是作为反应性过程。
保证案例用于交流和评估对关键系统属性(例如安全和保障)的信心。从历史上看,保证案件是手动创建的,由系统利益相关者通过漫长而复杂的过程对其进行评估。近年来,基于模型的系统保证方法已获得流行,以提高系统保证活动的效率和质量。这变得越来越重要,随着系统变得越来越复杂,管理其发展生命周期的挑战,包括开发,验证和验证活动的协调,以及相互联系的系统保证工件中的变化影响分析。此外,由于机器人和自主系统(RAS)被采用到社会中,因此需要保证案件来支持该系统运营生活期间的演变,以在面对不确定的环境的情况下进行持续的保证。在本文中,我们有助于访问 - 安全 - 关键系统的以保证案例为中心的工程,一种工程方法以及其工具支持,以开发围绕不断发展的基于模型的保证案例的安全 - 关键系统的开发。我们展示了基于模型的系统保证案例如何追踪到异质工程工件(例如系统建筑模型,系统安全分析,系统行为模型等。),以及如何在开发过程中整合形式的方法。我们证明了如何在开发和运行时自动评估保证案例。我们将方法应用于基于自动水下车辆(AUV)的案例研究。