van der waals(vdw)磁铁吸引了候选者,以实现利用当前磁化控制的自旋设备(例如,切换或域壁运动),但到目前为止的实验演示很少,部分原因是与这些系统中的磁化化相关的挑战。广场氮胶菌(NV)显微镜可以在整个VDW薄片上进行快速,定量的磁成像,非常适合捕获由于电流而导致的微磁性结构的变化。在这里,我们使用广场NV显微镜研究VDW Ferromagnet Fe 3 Gete 2(FGT)的薄片(约10 nm)中电流注射的影响。我们首先观察到在单个域水平上降低电流的固定性,其中FGT中的电流注入会导致局部逆转磁化所需的磁场大幅减少。然后,我们探讨了电流诱导的域壁运动的可能性,并为在相对较低的电流密度下提供了这种运动的初步证据,这表明我们设备中存在强电流诱导的扭矩。我们的结果说明了广场NV Mi-Croscopy对VDW磁体中的Spintronic现象的成像的适用性,突出了直接电流注入而没有相邻导体的辅助,并激励对FGT和其他VDW磁铁的效果进行进一步研究。
摘要。超分辨率显微镜迅速成为生命科学中的分析工具的重要性。一个引人注目的特征是能够使用(Live)细胞中荧光标记的La-Bel生物学单位,并且比传统的Mi-Croscopy允许的分辨率要高得多。然而,在观察到的流体团数方面,以这种方式获得的图像缺乏绝对强度量表。在本文中,我们讨论了对伴随它随之而来的这种流体团和统计挑战的艺术方法的状态。尤其是,我们建议通过单标记转换(SMS)显微镜生成的时间序列的调节方案,这使得可以从原始数据中以统计意义的方式量化标记数量。为此,我们对流膜片中的光子生成的整个过程进行建模,它们通过显微镜,检测和光电放大器在相机中的传播以及从显微镜图像中提取时间序列。这些建模步骤的核心是通过在两个时标(HTMM)上运行的新型隐藏的Markov模型对浮游机体动力学的仔细描述。在估计过程中,还推断出了流量转变速率的流动型数量,有关流体小子内部状态的动力学转变速率的信息。我们就将模型应用于模拟或测量的荧光痕迹时出现的计算问题,并说明了我们在模拟数据上的方法。关键词和短语:分子计数,超分辨率显微镜,定量纳米镜检查,生物物理学和计算生物学,无宿主隐藏的马尔可夫模型,统计变薄。
自 2019 年 12 月在中国武汉爆发以来,新型冠状病毒(即 Covid-19)在全球范围内迅速蔓延,已达到大流行的程度。当世界仍在努力弄清楚如何遏制新型冠状病毒的快速蔓延时,这场大流行已经在世界各地夺走了数千人的生命。然而,病毒在人类中传播的诊断已被证明是复杂的。计算机断层扫描成像、全基因组测序和电子显微镜的结合最初被用于筛查和识别 Covid-19 的病毒病因 SARS-CoV-2。由于每天的病例都在增加,医院可用的 Covid-19 检测试剂盒数量减少。因此,需要使用自我暴露框架作为快速替代分析,以遏制 Covid-19 在全世界范围内的个体间传播。在目前的工作中,我们制定了一种审慎的方法,该方法通过使用人工智能 (AI) 的 CT 扫描和胸部 X 光图像,帮助在正常人中识别 Covid-19 感染者。该策略适用于 Covid-19 和正常胸部 X 光图像的数据集。图像诊断工具利用决策树分类器来查找新型冠状病毒感染者。从精度、召回率和 F1 分数方面分析图像的百分比准确度。结果取决于 Kaggle 和 Open-I 商店根据其批准的胸部 X 光和 CT 扫描图像提供的信息。有趣的是,测试方法表明预期算法是稳健、准确和精确的。我们的技术实现了以人工智能创新为中心的准确性,可在训练和推理过程中提供更快的结果。
摘要:在这项研究中,使用Dibutyl邻苯二甲酸酯(DBP)制备了一种具有金属有机骨架(Fe 3 O 4 @MOF)载体的新型磁性分子印记的聚合物材料(Fe 3 O 4 @Mof @Mip-160)。该材料可用于食物中痕量的邻苯二甲酸酯(PAE)的有效,快速和选择性提取,并可以通过气相色谱 - 质谱法(GC-MS)检测它们。优化了材料的合成条件,以制备具有最高吸附性能的Fe 3 O 4 @MOF @MIP160。透射电子(TEM),傅立叶变换红外光谱(FT-IR),振动样品磁(VSM)和Brunauer – Emmett – Teller(BET)方法用于表征材料。与Fe 3 O 4 @MOF和磁性未印刷的聚合材料(Fe 3 O 4 @Mof @nip),Fe 3 O 4 @Mof @MIP @MIP-160具有轻松且快速地操纵磁性磁性的优势聚合物。Fe 3 O 4 @MOF@MIP-160 has good recognition and adsorption capacity for di-butyl phthalate (DBP) and diethylhexyl phtha- late (DEHP): the adsorption capacity for DBP and DEHP is 260 mg · g − 1 and 240.2 mg · g − 1 , and the adsorption rate is fast (reaching equilibrium in about 20最小)。此外,与传统的固相提取材料相比,Fe 3 O 4 @MOF @MIP160可以回收六次,使其具有成本效益,易于操作和节省时间。这证明了Fe 3 O 4 @Mof @MIP160适合从食物矩阵中检测和删除PAE。分析了饮用水,果汁和白葡萄酒中邻苯二甲酸酯的含量,回收率范围从70.3%到100.7%。
摘要:真菌 - 细菌组合在各种压力条件下提高和改善植物健康方面具有重要作用。真菌和细菌分泌的代谢产物在此过程中起着重要作用。我们的研究强调了单独的真菌Serendipita Indica分泌的继发代谢产物和Zhihengliuella sp。istpl4在正常生长条件下和砷(AS)应力条件下。在这里,我们评估了单独的S. Indica和Z. sp。的砷差异能力。ISTPL4在体外条件下。 S. indica和Z. sp的生长。 istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。 代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。 同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。 ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在体外条件下。S. indica和Z. sp的生长。istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4。共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在2.4 mm浓度为As。砷高于此浓度,导致孢子产生和菌丝碎裂。扫描电子显微镜(SEM)结果表明,在存在Z. sp。除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4(18±0.75 µm)与单独的s。在正常生长条件下(14±0.24 µm)相比。我们的研究得出的结论是,微生物财团的建议组合可用于通过打击生物胁迫和非生物压力来增加可持续农业。这是因为微生物组合释放的代谢产物显示抗真菌和抗菌特性。因此,选择财团和组合伙伴的选择很重要,可以帮助制定应对压力的策略。
摘要:真菌 - 细菌组合在各种压力条件下提高和改善植物健康方面具有重要作用。真菌和细菌分泌的代谢产物在此过程中起着重要作用。我们的研究强调了单独的真菌Serendipita Indica分泌的继发代谢产物和Zhihengliuella sp。istpl4在正常生长条件下和砷(AS)应力条件下。在这里,我们评估了单独的S. Indica和Z. sp。的砷差异能力。ISTPL4在体外条件下。 S. indica和Z. sp的生长。 istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。 代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。 同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。 ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在体外条件下。S. indica和Z. sp的生长。istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4。共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在2.4 mm浓度为As。砷高于此浓度,导致孢子产生和菌丝碎裂。扫描电子显微镜(SEM)结果表明,在存在Z. sp。除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4(18±0.75 µm)与单独的s。在正常生长条件下(14±0.24 µm)相比。我们的研究得出的结论是,微生物财团的建议组合可用于通过打击生物胁迫和非生物压力来增加可持续农业。这是因为微生物组合释放的代谢产物显示抗真菌和抗菌特性。因此,选择财团和组合伙伴的选择很重要,可以帮助制定应对压力的策略。