在史瓦西坐标系中,坍缩壳层的经典演化过程中,史瓦西相对流与固有时间的关系实际上迫使我们将黑洞的形成解释为一个高度非局部的量子过程,在这个过程中,壳层/反壳层对在初始视界内产生,从而恰好在视界处抵消原始坍缩壳层。通过研究黑洞背景中的量子场,我们发现了类似的非局部效应。除其他外,霍金对中即将离去的成员会很快与黑洞几何结构纠缠(而不是其伙伴),这与通常的假设相反,即根据视界附近的局部几何结构,霍金对最大程度地纠缠。此外,下落的波甚至在穿过视界之前就会影响黑洞几何结构。最后,我们发现粒子需要有限的时间才能穿过黑洞视界,从而避免在视界处发生的有限蓝移和红移。这些发现有力地支持了黑洞作为宏观量子物体的图景。
物理系统的动态行为通常源自其光谱特性。在开放系统中,有效的非炎症描述可以在复杂平面中获得丰富的光谱结构,因此伴随的动态非常丰富,而基本连接的识别和构成很具有挑战性。在这里,我们实验证明了局部激发的瞬时自我加速与使用有损耗的光子量子步道的非热谱拓扑之间的对应关系。首先将重点放在一维量子步行上,我们表明,测得的波函数的短时加速度与特征光谱所包围的区域成正比。然后,我们在二维量子步行中揭示了类似的对应关系,其中自动加速与复杂参数空间中特征光谱包含的体积成正比。在两个维度中,瞬态自动加速度越过长期行为,在漂移速度下以恒定流动为主。我们的结果揭示了频谱拓扑与瞬态动力学之间的通用对应关系,并为非光谱几何形状源自光谱系统的现象提供了敏感的探针。
巨大的无人机赛车(ADR)对空中机器人技术引起了极大的兴趣。早期解决方案使用经典的计算机视频算法进行门检测,而最新的方法采用了视觉同时定位和映射(SLAM)。展示了与世界冠军赢得比赛的解决方案。但是,这些主要依赖于车载摄像机的视觉数据,而人类与听觉感知相结合。受听觉感知的益处的动机,本研究研究了使用音频信号处理来检测无人机何时在比赛期间越过门。此检测解决了盲点问题,在跨越后,门从视觉传感器的视线中消失。初始结果表明,基于无人机螺旋桨引起的声音变化,使用音频信号识别门交叉的可行性。这是探索自动无人机赛车中听觉受到更大潜力的广泛潜力的首次努力。
图 1. 基于 Cas12a 的基因驱动显示出受温度调节的超孟德尔遗传率。(a)CopyCat 基因驱动系统示意图。DsRed 标记的 Cas12a 是一种静态转基因,它通过等位基因转换提供复制 GFP 标记的 CopyCat 元素的核酸酶,而等位基因转换由周围的同源臂驱动。(b)表达 Cas12a 的雄性与携带黑檀木 CopyCat 构建体(e1 或 e4 基因驱动)的处女雌性杂交方案。收集的处女雌性(Cas12a-dsRed + 基因驱动-GFP)与黑檀木突变雄性杂交,通过筛选 F2 后代中的 GFP 标记来评估种系传递率。深灰色半箭头表示雄性 Y 染色体。F1 雌性中的绿色三角形表示潜在的基因驱动复制到野生型染色体上。 (c) 通过对 GFP 标记的乌木 CopyCat 构建体的 F2 后代进行表型评分,评估 F1 雌性生殖系中的基因驱动活性。遗传率测量值与平均遗传率 (%)(也以黑条表示)和进行的 F1 杂交次数 (n) 一起报告在图表顶部。
概述 - 雷神公司迪内工厂 (RDF) 位于法明顿南部的纳瓦霍族保留地,是雷神导弹和防御公司 (RMD) 的一部分,而后者是雷神技术公司 (RTX) 的一部分。RDF 是一个先进的制造和测试工厂,占地 68,000 平方英尺,仓库面积 30,000 平方英尺。该工厂自 1989 年 8 月以来一直持续运营,具有高混合制造的特点。由于 RDF 具有成本效益,因此有机会通过目前在 RTX 投资组合中执行的遗留工作来扩展其业务,但是该工厂目前已被完全占用,扩展业务将需要更多空间。虽然该工厂为公司节省了大量劳动力成本,但扩建或建设的时间和成本会大大延长投资回报 (ROI) 时间范围。如果公司以最低的资本支出提供制造空间,那么这将为增长奠定基础。 RDF 的机遇涵盖了纽约州能源转型法案的所有三个要素。
另一方面,建立的商业滤清器类型采用聚合物中空纤维模块,例如聚乙醚 - 磺基(PES)。这些成本效率的模块被广泛用于微滤。一个典型的过滤器由数百个空心纤维组成(HF,图1a - c)亚毫米直径(在我们的案例研究中为300μm)和纳米侧孔,确定整个模块切割(在我们的案例研究中150 nm)。在标准的跨流过滤模式下,进料溶液在纤维内流动,纯化的水从侧面表面孔中脱离纤维段,如图1d和e。最近,我们证明了具有GO的涂层PES纤维的可行性,从而导致复合双层膜(HF-GO,图。1d和e)。该膜保留了PES-HF的微丝膜性能,同时还可以使小有机分子的吸附。通过在吸附前后通过X射线差异(XRD)分析确认,吸附是通过分子在堆叠的GO层之间的插入而发生的。32
liriomyza trifolii,一种农业害虫,偶尔被沃尔巴基亚感染。liriomyza trifolii中存在的沃尔巴氏菌菌株与细胞质不相容性(CI)作用相关,导致胚胎因抗生素治疗或自然无沃尔巴氏菌的菌株与无沃尔巴氏菌的菌株和沃尔巴赫氏菌之间的不相容杂交导致胚胎死亡。在这项研究中,采用高变量rRNA基因的高通量测序来表征沃尔巴契亚感染的未经抗生素治疗的沃尔巴奇氏菌的细菌群落。分析表明,Wolbachia在L. trifolii中主导了细菌群落,而较小的活杆菌,假单胞菌和Limnobacter的存在较小。为了阐明CI表型的遗传基础,还进行了元基因组测序以组装Wolbachia菌株的基因组。Wolbachia菌株W LTRI的草稿基因组为1.35 Mbp,GC含量为34%,包含1,487个预测基因。值得注意的是,在W LTRI基因组中,有三种不同类型的细胞质不兼容因子(CIF)基因:I型,III型和V型CIFA; b。这些基因可能是导致在三乳杆菌中观察到的强细胞质不相容性的原因。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
摘要 本文介绍了 F-35 的结构预测和健康管理系统。本文介绍了 F-35 计划,确定了关键的工业合作伙伴、当前的全球客户群,并强调了该计划的规模。然后,本文开始描述数据在系统中移动的方法,并将涉及数据跨越国界的问题以及该计划如何解决数据主权问题。本文的主体部分描述了该系统为满足严格的飞机结构完整性计划 (ASIP) 要求而提供的功能。本文深入介绍了机载硬件和软件功能,并简要说明了这些功能存在的原因,然后描述了系统记录的数据,最后描述了用于维护机身结构完整性的机外结构健康管理能力。本文还深入介绍了系统所采用的跟踪方法,并涉及系统所采用的功能如何在整个生命周期中得到开发和维护。本文最后解释了如何定制系统以满足特定客户要求,包括分析选项和用户可选择的方法来处理缺失数据。
随着 COVID-19 在全球蔓延,一些观察人士注意到,在疫情爆发初期,仍在使用一种古老的结核病疫苗(卡介苗)的国家,其 COVID-19 病例和人均死亡人数较少。本文使用地理回归不连续性分析来研究 COVID-19 流行率在西德和东德旧边界是否以及如何不连续地变化。这条边界曾在冷战时期将两个疫苗接种政策截然不同的国家分隔开来。我们提供了正式证据,表明边境的 COVID-19 病例确实存在相当大的不连续性。然而,我们还发现,不同年龄组的新型冠状病毒流行率差异是一致的,并表明当考虑到通勤流量和人口统计数据时,这种不连续性就会消失。这些发现与卡介苗假设不符。然后,我们为东西方分歧提供了另一种解释。我们模拟了德国每个县的流行病的典型 SIR 模型,允许感染沿着通勤模式传播。我们发现,在模拟数据中,当人们从西向东跨越原边界时,病例数也会不连续地下降。
