摘要:小儿高级神经胶质瘤(PHGGS)是神经胶质瘤的致命和异源亚组,为此,创新治疗的发展是紧迫的。高通量分子技术的进步已经揭示了这些疾病的关键表观遗传成分,例如组蛋白3的K27M和G34R/V突变。然而,DNA压实的修改本身并不足以驱动这些肿瘤。在这里,我们回顾了由H3突变引起的表观基因组重新布线的PHGGS子类别的分子特异性,以及随后与转录信号传导途径的肿瘤相互作用,从最终导致Gliomageneses的发展程序中相互采用的转录信号通路。了解在这些肿瘤中每个细胞环境中的转录和表观遗传变化如何协同化可以允许识别新的致命弱点的高跟鞋,从而突出新的杠杆来改善其治疗管理。
胰腺 β 细胞通过产生和分泌胰岛素在葡萄糖稳态中发挥关键作用。胰岛素释放受损会导致慢性高血糖症,并导致 2 型糖尿病 (T2D) 的发展。胰岛素储存在分泌颗粒中,当血糖水平升高时,分泌颗粒被运输到质膜上,然后胞吐到循环系统中。将葡萄糖代谢与胰岛素分泌联系起来的机制很复杂,涉及 Ca 2+ 和磷脂信号传导。膜接触位点 (MCS) 是细胞器膜紧密相邻的特殊区域,为两个区域之间的非囊泡脂质交换和 Ca 2+ 运输提供了管道,但它们对正常 β 细胞功能的重要性尚不清楚。在这里,我们发现了一种涉及 ER 和胰岛素颗粒的新型 MCS,它们促进了两个细胞器之间的脂质交换。氧固醇结合蛋白 (OSBP) 是一种胞浆脂质转运蛋白 (LTP),它以 Ca 2+ 和 pH 依赖的方式被募集到这些 MCS 中,并催化颗粒状 PI(4)P 与 ER 胆固醇的交换。这种机制对于正常的胰岛素分泌至关重要。跨膜蛋白 24 (TMEM24) 是一种 ER 锚定的 LTP,它与质膜 (PM) 动态相互作用并为其提供磷脂酰肌醇(其他磷酸肌醇的前体)。我们发现 TMEM24 定位在空间和时间上受 Ca 2+ 和二酰甘油 (DAG) 调节,并且从 PM 分离后,它稳定在 ER-线粒体 MCS 上。TMEM24 的缺失导致 ER 和线粒体 Ca 2+ 失调、ATP 产生受损以及胰岛素分泌减少。高分辨率成像进一步显示,TMEM24 还位于靠近线粒体的一组新合成的胰岛素颗粒附近。这些细胞器接触还由线粒体上的电压依赖性阴离子通道 (VDAC) 和 Mitofusin-2 以及胰岛素颗粒上的囊泡核苷酸转运体 (VNUT) 的存在定义。VNUT 表达减少会消除线粒体和胰岛素颗粒之间的相互作用,并导致胰岛素颗粒的生物合成和胞吐受损。总之,我们的研究结果强调了不同 MCS 在维持正常 β 细胞功能方面的重要作用。
高血糖可能是由胰岛素降低和/或胰岛素抵抗引起的,是2型糖尿病的主要症状,这是一种显着的内分泌代谢疾病。常规药物,包括胰岛素和口服抗糖尿病药物,可以减轻糖尿病的迹象,但不能以生理正常的糖尿病恢复胰岛素释放。肝脏检测并反应在多种代谢情况下发生的营养状况下的转移,使其成为维持能量稳态的必不可少的器官。它还通过分泌肝动力油在葡萄糖代谢中发挥关键功能。新兴的研究表明,喂养诱导肝素释放,从而调节葡萄糖和脂质代谢。值得注意的是,这些喂养引起的肝动力石作用于多个器官,以调节糖脂肪毒性,从而影响T2DM的发展。在这篇评论中,我们专注于描述喂养诱导的肝素,包括adropin,manf,leap2和pcsk9,以及代谢器官(例如,脑,心脏,胰腺和脂肪组织)如何影响代谢性疾病,从而揭示了一种新型的控制和管理2型疾病的方法。
根据最新的世界卫生组织统计数据,心血管疾病(CVD)是全球死亡的主要原因之一。由于主要危险因素的患病率上升,例如糖尿病和肥胖,因此CVD的负担预计在未来几十年中会恶化。肥胖是CVD的主要且一致的危险因素,但外周脂肪仓库与心脏之间的潜在病理分子通信仍然知之甚少。脂肪组织(AT)是人体中的主要内分泌器官,复合细胞产生和分泌激素,细胞因子和非编码RNA进入循环中,以改变包括心脏在内的多个器官的表型。ecardial at(eat)是一种与心肌直接接触的沉积物,因此可以通过机械和分子均值影响心脏功能。,居民和招募的免疫细胞包括一种重要的脂肪细胞类型,可以在肥胖症的背景下创建促炎环境,有可能导致系统性的炎症和心肌病。脂肪到心串扰的新机制,包括受非编码RNA和细胞外囊泡管辖的机制,正在研究加深对这一高度常见危险因素的理解。在这篇综述中,将讨论AT和心脏之间的分子串扰,重点是内分泌和旁分泌信号传导,免疫细胞,炎症细胞因子以及通过非编码RNA进行的 - 器之间的通信。
在产后哺乳动物中,心脏对循环需求的增加进行重塑。在出生后的几天中,心脏细胞(包括心肌细胞和纤维细胞)逐渐失去了与失去心脏再生能力相关的胚胎特征。此外,产后心肌细胞经历了双核和细胞周期停滞,并通过诱导肥大性生长,而心脏纤维细胞会增殖并产生细胞外基质(ECM),这些基质(ECM)从组成部分过渡到支持细胞成熟,以产生成熟的素质骨膜骨骼的心脏。最近的研究暗示了在成熟的ECM环境中心脏纤维细胞和心肌细胞的相互作用,以在产后促进心脏成熟。在这里,我们回顾了不同心脏细胞类型和ECM的关系,因为心脏在发育过程中发生结构和功能变化。该领域的最新进展,尤其是在最近发表的几个转录组数据集中,它突出了特定的信号传导机制,这些机制是细胞成熟的基础,并证明了心脏纤维细胞和心肌细胞成熟的生物力学相互依存。越来越多的证据表明,哺乳动物的产后心脏发育取决于特定的ECM成分,并且导致生物力学影响细胞成熟的变化。这些进步在定义与心肌细胞成熟和细胞外环境相关的心脏纤维细胞异质性和功能方面,提供了对心脏后心脏中复杂的细胞串扰的支持,对心脏再生和疾病机制的影响。
尽管影响人胰腺的绝大多数癌症是胰腺导管腺癌(PDAC),但还有其他几种源自该器官的非分泌细胞的癌症类型,即,胰腺神经内分泌肿瘤(Pannet)。PDAC和PANNET的基因组分析表明,某些信号传导途径,例如通过转化生长因子B(TGF-B)触发的信号传导途径经常改变,突出了它们在胰腺肿瘤发展中的关键作用。在PDAC中,TGF- B起双重作用,在健康组织和肿瘤发育的早期阶段充当肿瘤抑制剂,但在后期肿瘤进展的启动子。该肽生长因子充当上皮到间质转变(EMT)的有效诱导剂,这是一种发展程序,将其他固定的上皮细胞转化为具有增强转移潜力的侵入性间质细胞。tgf- b通过涉及受体调节的SMAD蛋白,SMAD2和SMAD3的规范SMAD途径以及常见者SMAD,SMAD4以及SMAD独立的途径,即,ERK1/2,PI3K/AKT和Somatotatin(SST)。积累证据表明TGF-B和SST信号之间的串扰不仅在PDAC中,而且最近在Pannet中也是如此。在这项工作中,我们回顾了两种途径之间有关信号相互作用的可用证据,我们认为这具有潜在的潜力,但尚未完全理解对胰腺癌发展和/或进展以及新型治疗方法的重要性。
免疫系统识别病原体和抗原水平的入侵微生物。Toll样受体(TLR)在针对病原体的第一线防御中起关键作用。TLR的主要功能包括细胞因子和趋化因子的产生。TLR与其他受体共享常见的下游信号通路。围绕TLR旋转的串扰相当复杂而复杂,强调了免疫系统的复杂性。通过TLRS产生的细胞因子和趋化因子的蛋白鱼可能会受其他受体的影响。整合素是在许多不同细胞上表达的关键异二聚体粘附分子。有一些研究描述了TLR和整联蛋白之间的协同或抑制性相互作用。因此,我们回顾了TLR和整合素之间的串扰。了解串扰的性质可以使我们能够通过整合素来调节TLR功能。
肌肉减少症是与年龄相关的骨骼肌质量和力量的非自愿丧失。阿尔茨海默氏病(AD)是老年人痴呆的最常见原因。迄今为止,没有针对肌肉减少症和AD的效率治疗方法。身体和认知障碍是老年人口中残疾的两个主要原因,这严重降低了生活质量并增加了经济负担。在临床上,肌肉减少症与AD密切相关。但是,该关联的基本因素仍然未知。关于肌肉的机理研究 - 认知障碍期间的脑串扰可能会阐明新见解和新型治疗方法,以打击认知能力下降和AD。在这篇综述中,我们总结了最新的研究,该研究强调了肌肉减少症与认知障碍之间的关联。讨论了肌肉涉及的潜在机制 - 脑串扰和这种串扰的潜在影响。最后,还探索了药物开发的未来方向,以改善与年龄相关的认知障碍和与广告相关的认知功能障碍。
脑衍生的神经营养因子(BDNF)是大脑内的关键神经营养蛋白,通过选择性激活TRKB受体,对神经发育,突触可塑性,细胞完整性和神经网络动态产生多模式的影响。In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the神经组织,与神经发育,突触可塑性,细胞稳态,认知和情感处理有关。最近的研究证据表明,这两个主要的调节系统在各个层面上相互作用:它们具有共同的细胞内下游途径,GCS在某些条件下对BDNF的表达差异化,BDNF在某些条件下拮抗GC诱导的对长期增强的影响对长期增强对长期的影响,神经性出生和细胞死亡的影响,而GCS则在GCS进行了gccs interaneal and nistanal and and and and and and and and and and and and and and anfn。当前,BDNF-GC串扰特征主要在神经元中研究,尽管初始发现表明,对于其他脑细胞类型,例如星形胶质细胞,这种串扰可能同样重要。阐明BDNF-GC相互作用的精确神经生物学意义,以示波器方式进行,对于理解脑功能和功能障碍的微妙之处至关重要,对神经退行性和神经性衰弱和神经性疾病疾病,情绪疾病,情绪障碍,情绪和认知策略的影响至关重要。
神经炎症是许多神经疾病疾病的共同特征。它促进了功能障碍的神经元 - 小胶质细胞 - 星形胶质细胞串扰,后者又将小胶质细胞保持在有效的反应性状态,通常会增强神经元损伤。未充分探索介导这种关键交流的分子成分。在这里,我们表明,分泌的卷曲相关蛋白1(SFRP 1)是细胞对细胞通信的多功能调节剂,是细胞串扰神经炎症的一部分。在急性和慢性神经炎症的小鼠模型中,SFRP 1(在很大程度上是星形胶质细胞衍生的)促进和维持小胶质细胞的活性,从而促进了慢性炎症状态。sfrp 1促进了缺氧诱导的因子依赖性炎症途径的成分的上调,并在较低程度上促进了核因子-kappa B.因此,我们提出SFRP 1充当神经炎性的星形胶质细胞到微糖放大器,这代表了在几种神经退行性疾病中抵消慢性炎症的有害效应的潜在有价值的治疗靶标。