独立于设备的量子密钥分发 (DIQKD) 提供了最强大的安全密钥交换形式,仅使用设备的输入输出统计数据即可实现信息论安全性。尽管 DIQKD 的基本安全原理现已得到充分理解,但为高级 DIQKD 协议推导出可靠且强大的安全界限仍然是一项技术挑战,这些界限要超越基于违反 CHSH 不等式而得出的先前结果。在这项工作中,我们提出了一个基于半有限规划的框架,该框架为使用不受信任设备的任何 QKD 协议的渐近密钥速率提供可靠的下限。具体而言,我们的方法原则上可用于基于完整输入输出概率分布或任何贝尔不等式选择来为任何 DIQKD 协议找到可实现的密钥速率。我们的方法还扩展到其他 DI 加密任务。
电池片包装紧密,四周用柔软海绵包裹,箱体四周用热缩套管包裹。外包装箱必须有防震装置,以适应长途运输。包装后,电池片应存放在室内,湿度低于60%,温度为(20±10)℃。如果电池片的存放时间超过90天,应重新抽检。
欧盟免责声明 加密资产投资在某些欧盟国家和英国不受监管。没有消费者保护。您的资金面临风险。eToro 在欧洲受塞浦路斯证券交易委员会监管,在澳大利亚受澳大利亚证券和投资委员会监管,在英国受金融行为监管局监管。eToroX 在直布罗陀注册成立,公司编号为 116348,注册办事处位于直布罗陀 Line Wall Road 57/63 号。其分布式账本技术 (DLT) 提供商许可证由直布罗陀金融服务委员会于 2018 年 12 月授予(许可证编号 FSC1333B)。
摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。
摘要,由于基于化石的材料引起的环境问题,从生物基础资源中开发了可持续材料。木质素是一种化学复杂的生物聚合物,存在于血管植物的木质组织中。木质素具有许多有用的特性,例如抗氧化活性,热稳定性,紫外线吸收性,刚度等。然而,木质素的固有挑战与其复杂的分子结构以及在水和常见溶剂中的溶解度差有关。一种利用木质素的一种策略是制造木质素纳米颗粒(LNP),以在水中产生胶体稳定的分散体。本论文旨在开发基于LNP的材料,这些材料可用于光子晶体和光热膜用于节能功能材料。论文的第一部分重点是阐明在LNP-Photonic Crystal(L-PC)的离心辅助组装过程中发生的现象。L-PC。在后续工作中,开发了一种改进的方法来提高L-PC的产量。研究了诸如初始木质素浓度以及稀释时间对粒径和稀释时间的影响,并研究了形成的LNP的PDI。经验模型以预测LNP的大小,并成功用于控制L-PC的颜色。此外,研究了L-PC的纳米结构。LNP-Chitosan膜和涂料并将其应用于室内热管理。将LNP含量从10到40 wt%调节。在论文的第二部分中开发了木质素吸收太阳能(光波长:250–2500 nm),基于LNP的复合膜和具有光热性能的涂层的能力。通过合并LNP,与纯壳聚糖膜相比,膜的机械强度和光热性能得到了改善。此外,通过使用LNP作为还原剂制备LNP-Silver-Chitosan(CC-AG@LNP)膜。用紫外线辅助在LNP的表面降低了银离子,并使用杂交纳米颗粒来通过铸造来制备膜。CC-AG@LNP膜表现出改善的湿势,并针对大肠杆菌表现出抗菌性能(灭菌作用> 99.9%)。总的来说,本文既有助于木质素聚集的基本见解,又有助于胶体颗粒的胶合颗粒,并展示了控制其组装并掺入具有附加功能的宏观材料中的方法。
液体晶体(LC)是一种出色的电磁材料,在液体和晶体固体之间具有中间结构。它具有较大的光学各向异性,其光学特性可以通过中等外部磁场轻松修饰,从而使光的放大和相位调制。LC显示基于光的幅度或两极分化的模拟,已成为巨大的商业成功。同时,在光子学领域探索了许多LC设备的新型非显示器应用[1-6]。lc光学元素在操纵不同程度的光中发现了新的作用,尤其是在矢量梁的工程中,具有简单配置,方便使用,低成本和高转换效率的优势。向量场[7 - 9],其中横梁横平的光极化是空间变化的,引起了很多关注。矢量梁作为对矢量螺旋方程的自然解决方案。它们经常被生成具有正交极化状态的正交标量场的超级位置,为
博茨瓦纳 - 哈佛健康合作伙伴关系,Gaborone,Botswana(T Mbangiwa PhD,K Lechiile MSC,T Leeme MBBS,N Youssouf PhD,D S Lawrence MBCHB,M Mosepele,M Mosepele,M Mosepele MD,J n jarvis MRCP PhD);巴黎大学的巴斯德研究所,帕里斯特大学,转化真菌学小组,国家deRéférencemycoses mycoses ivasives et Antifongiques,法国巴黎真菌学系(T Mbangiwa,Sturny-LeclèreMSC,T Boyer-Chammard Md,boyer-Chammard Md,ofoer-chammard Md,of o o o lortholary md phd phd phd phd phd phd,prap pr a a a alanio a a alanio pr。南非开普敦大学卫生科学系病理学系传染病与分子医学研究所(T Mbangiwa,J C Hoving Phd,H Mwandumba博士);马拉维 - 韦尔康信托基金会临床研究计划,卡缪祖健康科学大学,马拉维布兰蒂尔(C Kajanga MSC,M Moyo MBBS);法国Ajaccio的中心D'Ajaccio中心传染病和热带医学系(T Boyer-Chammard);南非传染病与分子医学研究所(IDM)的非洲CMM医学真菌学研究部门,南非开普敦(J C Hoving);英国伦敦卫生与热带医学学院传染和热带疾病学院临床研究系,英国伦敦(N Youssouf,D S Lawrence,J N Jarvis教授);利物浦热带医学学校,英国利物浦(H Mwandumba);
除了大规模解锁医学研究以定义和优化公共卫生保健政策,这在孤岛世界中是不可能的,Hubaux认为SF-GWAS将具有宝贵的副作用。目前,数据集实际上是在全球分布的,坐在这里和那里的硬盘和磁带上,因为传统上传输数据非常复杂。医疗数据的记录在不同地方的应用也有所不同。Hubaux称此“史前”称为“史前”,并说,因此数据集的充分利用不足。
信息工程,基础设施和可持续能源部(DIIES),雷格·卡拉布里亚(Reggio Calabria)的大学“地中海”。feo di vito,89122意大利雷吉奥·卡拉布里亚(Reggio Calabria),b agenzia nazionale per le nuove tecnologie,l'Energia e lo sviluppo经济索斯替尼比尔(Enea)(Enea),Casaccia Casaccia研究中心,罗马00123,ITALY C ITALY IBERIAN IBERIAN IBERIAN NANOTECHNOLOGE BRAIG-3 33 D YSESE大学材料科学与工程系,首尔,北大韩民国材料科学与工程系,首尔国立大学材料科学与工程部,首尔市长08826,大韩民国高级材料研究所高级材料研究所(RIAM),首尔国立大学,首尔国立大学,首尔08F826,韩国共和国Gustorea Gyernied Instuperiity offector offerea thepsier offeraea h himea keprotied首尔国立大学,首尔08826,大韩民国
他们还发现了另一个不寻常的电子现象:整数量子异常霍尔在多种电子密度中的效应。分数量子异常霍尔效应被认为是在电子“液体”相中出现的,类似于水。相比之下,团队现在观察到的新状态可以解释为电子“固体”阶段 - 与电子“冰”的形成相互作用 - 当系统的电压在超低温度下仔细调谐时,该状态也可以与分数量子异常的霍尔同存。