九州大学物理学系的福田淳一教授与日本产业技术综合研究所 (AIST) 和日本科学技术振兴机构 (JST) 的高桥和明博士合作,对胆甾型蓝相进行了研究。胆甾型蓝相是一种特殊的液晶,具有独特的立方对称性。这些蓝相形成具有独特性质的复杂三维结构,使其成为基础科学和材料工程领域非常感兴趣的课题。
富 Ge GeSbTe (GGST) 合金的开发显著提高了相变存储技术所需的高温稳定性。先前对 Sb/Te 比小于 1(Sb = Te , 1)的 GeSbTe (GST) 材料中 Ge 富集的研究强调了立方 Ge 和立方 GST 相的分离。这种分离的立方 GST 相是亚稳态的,呈现出多晶结构,其晶粒边界无序,可能导致结构弛豫,进而导致漂移现象。在这项工作中,利用电阻率测量、拉曼光谱和原位 x 射线衍射分析,我们首次证明 Sb/Te 比大于 1(Sb = Te . 1)的 GGST 在退火时会直接形成具有高生长速度的 GST 六方相,绕过立方亚稳态相。结合 Ge 富集,Sb = Te 成核的活化能值增加。 1 GGST 合金确保了非晶相的高稳定性。最后,氮的引入进一步稳定了系统以防止结晶,而不会损害高晶体生长速度和 Sb = Te 合金中稳定的 GST 六方相的形成。1. 这些结果证明了可以调整富 Ge GeSbTe 合金中偏析相的晶体结构,将非晶相在高温下的稳定性与目标 GST 相的高结晶速度和均匀性(具有较大的晶粒)相结合。
在这里,我们使用密度功能理论比较了具有或没有反相边界的不同III-V晶体构型的稳定性,具有或没有反相边界的阶梯式SI底物,用于突然和补偿界面。通过电荷密度分解和机械应变的原子量表描述分析了不同异质结构的热力学稳定性。我们表明,III-V晶体通过在异方面的电荷补偿更改而适应Si Monoatomic步骤的配置要比形成反相对边界的配置要稳定得多。因此,这项研究表明,在III-V/SI样品中通常观察到的反相边界不是源自Si Monootomic阶梯边缘,而是来自不可避免的动力学驱动的单相3D III-V岛的合并。
Sige合金数十年来引起了很多兴趣,尤其是在微电子行业中。如今,它们已在许多设备中使用。的确,由于GE [1]中的较高的孔迁移率和相对较小的晶格参数差异,因此它们与硅设备的兼容性使得能够设计出诸如应变,载流子迁移率和带盖之类的特性。一个人可以使用sige:b源和排水量来压缩PMOS通道,从而改善其电气性能[2]。但是,设备的连续微型化需要形成越来越浅的源/排水(S/d)连接,但具有高掺杂剂激活。因此,退火过程时间尺度变短且较短[3,4]。纳秒激光退火(NLA)可以达到SI [5-7]或GE [8,9]中的较高掺杂剂的激活。紫外线NLA(UV-NLA)也可以用于3D整合,因为其短脉冲持续时间及其短波长导致表面附近的高退化温度,同时将嵌入式层保持在较低的温度下[10-13]。
沉积单钠和焦磷酸钙(MSU和CPP)微晶体负责痛风和软骨钙化中的疼痛和复发性炎症。在这些病理学中,炎症反应是由于巨噬细胞的激活引起的,负责释放包括IL-1β在内的各种细胞因子。IL-1β的成熟是由多蛋白质NLRP3插度介导的。在这里,我们发现晶体通过晶体的激活和IL-1β的同时产生的激活取决于细胞体积通过激活OSMO敏感的LRRC8阴离子通道的调节。LRC8的药理抑制和遗传沉默消除了晶体在体外和晶体诱导的胞内肿块模型中的浮游性激活。MSU/CPP晶体暴露时LRRC8激活诱导ATP释放,P2Y受体的激活和NLRP3炎性流向膜体激活和IL-1β成熟所必需的细胞内钙升高。在关节晶体诱导的炎症的背景下,我们确定了LRRC8 OSMO敏感的阴离子Channels具有病理生理相关性的功能。
液晶弹性体 (LCE) 表现出一些显著的物理特性,例如在不同性质的适当环境刺激(如热刺激)下可引起可逆的较大机械变形,这使得它们可以用作软致动器。LCE 所表现出的独特特性源于它们的各向异性微结构,其特点是嵌入聚合物网络中的液晶原分子的优先取向。LCE 设计中的一个悬而未决的问题是如何控制它们的驱动效率:液晶原分子的数量、它们如何连接到网络、有序度、交联密度是一些可控参数,然而,除了最后一个参数外,它们的空间分布一般无法调整。在本文中,我们开发了一个基于微机械的理论框架来模拟和探索网络交联密度对液晶弹性体元件机械驱动的影响。在此背景下,用于获得弹性体交联网络的光诱导聚合(光聚合)尤其令人感兴趣,它适用于精确调整材料内的交联密度分布;该技术能够获得分子级架构的 LCE,从而实现可获得驱动的最佳设计。在智能结构元件(LCE 微结构设计和优化)内正确设置交联密度排列的可能性代表了一种创建具有材料微结构编码所需驱动能力的分子级工程 LCE 元件的有趣方法。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
“如果我想制作任意三维形状,比如手臂或抓手,我必须排列液晶,这样当受到刺激时,这种材料就会自发地重新组合成那些形状,”塞拉说。“到目前为止,缺少的信息是如何控制液晶排列的三维轴,但现在我们有办法实现这一点。”
铅卤化物钙钛矿纳米晶体是经典和量子光发射的有前途的材料。要了解这些出色的特性,需要对带边的激子发射进行彻底的分析,这是由于扩大效果而在整体和室温研究中无法达到的。在这里,我们报告了中间量子限制方案中单个CSPBBR 3 NC的光致发光的低温温度研究。我们揭示了观察到的光谱特征的尺寸依赖性:亮点激子能量分裂,TRION和BIEXCITON结合能以及光学声子复制频谱。此外,我们表明明亮的三重能量分离与纯交换模型一致,并且可以简单地考虑发射偶极子和发射状态的种群的方向来合理化所记录的极性特性和光谱。
*通信:james.utterback@sorbonne-universite.fr摘要实现具有内置纳米级热流动性的可调功能材料是一个重大挑战,可以推进热管理策略。在这里,我们使用时空分辨的热反射率在各向异性AU纳米晶体的自组装超晶体中可视化侧向热传输各向异性。相关电子和热反射显微镜表明,纳米尺度的热量主要沿各向异性纳米晶体的长轴流动,并且在晶粒边界和弯曲的组件上进行了这种情况,而弯曲的组件则干扰热流动。我们通过组成纳米棒的长宽比来精心控制各向异性,并且它超过了纳米双锥体超晶体的纵横比和某些纳米排列。有限元模拟和有效的培养基建模合理地将出现的各向异性行为合理化,以简单的串联电阻模型,进一步提供了一个框架,以估算热各向异性作为材料和结构参数的函数。胶体纳米晶体的自组装有望在使用这种重要材料类别的广泛应用中引导热流的有趣途径。关键字纳米级热传输,胶体纳米晶体,超晶,各向异性,热质融合,时空显微镜