摘要:由于硅在自然界的普遍性和其特殊的性质,它是各行各业中最受欢迎的材料之一。目前,冶金硅是通过石英的碳热还原获得的,然后对其进行氢氯化和多重氯化以获得太阳能硅。这篇小型综述简要分析了通过电解熔盐获得硅的替代方法。综述涵盖了决定熔盐成分选择的因素、通过电解熔盐获得的典型硅沉淀物、对将电解硅用于微电子的可能性的评估、在锂离子电流源成分中使用电解硅的代表性测试结果以及将电解硅用于太阳能转换的代表性测试结果。本文最后指出了实际实施电解生产硅的方法、开发用于能源分配和微电子应用的新设备和材料需要解决的任务。
了解量子多体系统的动力学仍然是一个至关重要的问题,其应用从凝结物理学到量子信息。在数值和分析上,计算动力学数量(例如相关函数和纠缠增长)是一个众所周知的困难问题。近年来,统一电路已经超越了量子计算模型,以最小模型,以研究由局部相互作用控制的一般大学动力学的研究[1-8]。一类特殊的此类电路,称为双统一电路,仍然可以通过精确的计算[9,10]。这些电路是通过基本的时空二元性来表达的,从而导致时间和空间中的单一动力学。这种二元性允许精确计算局部可观察物的相关函数动态[9,11-14],超阶相关器[15,16],纠缠[10,17],量子混乱[18 - 21]的指标[18 - 21],以及双重独立的电路和自然是活跃的理解的主题[22 - 38]和实验[22 - 38]和实验[39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39] [39]超越了封闭量子系统的纯统一动力学,电路模型还通过在时空中给定点引入投影测量值,为非自然动态提供了自然的游戏场。随着微调率的提高,此类系统可能会经历从体积法的过渡到稳态
随着抗生素耐药性不断上升到危险水平,我们面临失去抗生素效力的风险。新开发的药物失效速度比过去几十年快得多,而我们新发明的速度却令人担忧地落后。这一瓶颈迫使我们重新评估关于如何使用现有抗生素的战斗策略。治疗药物监测 (TDM) 是一种临床实践,用于测量血液或血浆中或可与血液药物水平相关的其他生物体液中的药物浓度。抗生素治疗的成功在很大程度上取决于能否将抗生素浓度保持在治疗范围内,以适应患者独特的药代动力学/药效动力学 (PK/PD)。然而,在目前的实践中,这个操作窗口是根据数据确定的
变量 数值 单位 参考 电解器效率(LHV) 65 % [36] 电解器 H 2 出口压力 30 bar [36] H 2 压缩多变效率 60 % [37] H 2 存储最大压力 350 bar [38] 气网压力 50 bar [39] CO 2 压缩多变效率 85 % [40] CH 4 压缩多变效率 85 % [40] 电解器标称功率 3 MW 本文 甲烷化反应器压力 10 bar [3] 甲烷化反应器温度 350 ºC [3] CO 2 源能耗 0.64 kWh/kg CO2 [41]
该策略阐明了欧洲机器人界的集体愿景。它借鉴了来自欧洲境内的多种信息来源,来自欧洲主题小组,研讨会和市场研究,从跟踪全球机器人技术的进步以及与其他协会和组织的合作。它提出了一系列建议,内容涉及公共和私人组织应如何努力确保欧洲的机器人技术在中长期内具有经济和社会影响。这些关于使欧洲产品和服务能够创造附加值的中心,同时维持欧洲强大的机器人研究和创新基础。它列出了支持吸收的案例,长期关注研究并满足从机器人的角度来支持欧洲强大的创新基础设施的基本需求。它探讨了机器人创新的途径和创新增长的方向。
材料研究学会研究生金奖,材料研究学会,2017 年秋季年会美国国家科学基金会 Vizzies 科学可视化奖,Octobot 摄影作品大众选择奖,2017 美国国家科学基金会研究生研究奖学金,2012-2015 乔治 H. 米切尔学术卓越奖,德克萨斯大学奥斯汀分校,2012 德克萨斯大学奥斯汀分校学院理事会月度本科生研究员,2012 德克萨斯大学奥斯汀分校本科生研究奖学金,2011 初级研究员,德克萨斯大学奥斯汀分校初级研究员荣誉计划,2009-2012 大学学者,德克萨斯大学奥斯汀分校考克雷尔工程学院,2009 和 2010德克萨斯大学奥斯汀分校,2007 年至 2012 年十个学期中的九个学期
摘要:高纵横比硅微纳米结构在微电子、微机电系统、传感器、热电材料、电池阳极、太阳能电池、光子装置和 X 射线光学等多种应用领域中具有技术相关性。微加工通常通过反应离子干法蚀刻和基于 KOH 的湿法蚀刻来实现,金属辅助化学蚀刻(MacEtch)作为一种新型蚀刻技术正在兴起,它允许在纳米级特征尺寸中实现巨大的纵横比。到目前为止,文献中缺少对 MacEtch 的专门综述,既考虑了基本原理,也考虑了 X 射线光学应用。本综述旨在提供全面的总结,包括:(i)基本机制;(ii)在垂直于 <100> Si 基底的方向上进行均匀蚀刻的基础和作用;(iii)用 MacEtch 制造的几个 X 射线光学元件示例,例如线光栅、圆形光栅阵列、菲涅尔区板和其他 X 射线透镜; (iv) 吸收光栅完整制造的材料和方法以及在基于 X 射线光栅的干涉测量中的应用;以及 (v) X 射线光学制造的未来前景。本综述为研究人员和工程师提供了对 MacEtch 作为 X 射线光学制造新技术的原理和应用的广泛和最新的理解。
当透射电子显微镜 (TEM) 中的光或电子束与金属纳米粒子相互作用时,可以产生适用于光催化的等离子体。等离子体能量取决于金属类型、粒子大小和金属粒子嵌入的化合物的介电性质。这项活动的主要目的是了解等离子体能量如何受到周围介电介质的影响,因为这些信息对于优化选择性 CO2 转化至关重要。博士候选人将专注于合成定义明确的模型材料,并使用 TEM 和光谱测量金属纳米粒子和无机化合物(介电介质)之间的等离子体相互作用。材料合成将包括金属纳米粒子,以及可能的钙钛矿基氧化物和金属有机骨架 (MOF)。
社会大趋势也表明,需要增加机器人技术的利用率。有必要将制造业从汽车转移到半导体。目前(后疫情时代)劳动力短缺。根据美联储的数据,每十个空缺行业职位中只有七名工人可用 1 。如果没有提高生产率的“工具”,经济增长将面临挑战。人口每天老龄化 8 小时,随着时间的推移,劳动力减少,65 岁以上人口数量显著增加,这将对医疗保健系统和那些希望长期留在家中以继续享受高质量生活的人构成挑战。在技术快速变化的世界中,还需要提供持续劳动力培训的机制,以保持和发展经济增长的良好条件。
