美国航空喷气通用公司 美国宇航学会 (AAS) 美国航空航天学会 (AIAA) 战略与国际研究中心 (CSIS) 北达科他大学空间研究系 联邦航空管理局 商业空间运输办公室 (FAA/AST) 佐治亚理工学院航空航天工程学院 国际月球观测协会 斯特恩斯和坦南律师事务所 洛克希德马丁公司 Microcosm, Inc. 美国国家航空航天局 (NASA) 美国国家海洋与大气管理局 (NOAA) 诺斯罗普·格鲁曼公司 奥德赛空间研究项目管理研究所 火箭研究所 安全世界基金会 Sirius XM 电台 南达科他矿业技术学院 乔治华盛顿大学空间政策研究所 空间系统/劳拉尔 航空航天公司 波音公司 约翰·霍普金斯大学应用物理实验室 行星学会 美国地质调查局 (USGS) 联合空间联盟 (USA) 阿拉巴马大学亨茨维尔分校 (UAHuntsville) 维珍银河有限责任公司 世界空间周协会 Wyle X PRIZE 基金会 大洋洲
美国 Aerojet-General 公司 美国宇航学会 (AAS) 美国航空航天学会 (AIAA) 战略与国际研究中心 (CSIS) 北达科他大学空间研究系 联邦航空管理局 商业太空运输办公室 (FAA/AST) 佐治亚理工学院航空航天工程学院 国际月球观测协会 斯特恩斯和坦南律师事务所 洛克希德·马丁公司 Microcosm, Inc. 美国国家航空航天局 (NASA) 美国国家海洋与大气管理局 (NOAA) 诺斯罗普·格鲁曼公司 奥德赛空间研究项目管理研究所 火箭研究所 安全世界基金会 Sirius XM 电台 南达科他矿业技术学院 乔治华盛顿大学空间政策研究所 太空系统/劳拉 航空航天公司 波音公司 约翰·霍普金斯大学应用物理实验室 行星学会 美国地质调查局 (USGS) 联合空间联盟 (USA) 阿拉巴马大学亨茨维尔分校 (UAHuntsville) 维珍银河有限责任公司 世界空间周协会 怀尔X PRIZE 大洋洲基金会
在几种物种中,抗性和易感个体之间的表型差异与基因表达的组成型变化有关。例如,在对神经毒性杀虫剂有抵抗力的个体中观察到了排毒基因家族的构型过表达。这表明了代谢解毒在抗性中的作用,在某些情况下,允许允许使用哪些基因参与耐药的遗传方法。细胞色素P450单糖酶和三磷酸腺苷(ATP)结合盒(ABC)转运蛋白的情况就是这种情况。5,24 - 29除解毒基因之外,已经记录了编码角质层合成基因的过表达,并导致耐药性和易感性的独立物(即穿透性抗性)之间的表皮变化。30该证据突出了通常基于抗性表型的复杂性,并表明需要研究基因表达以充分理解昆虫抗性。与其他杀虫剂相反,抗药性个体中的表达情况已被广泛阐明,蚊子对CSIS的抗性表型的整个基因表达模式仍然被忽略了。在这里,我们的目标是通过分析蚊子CX的易感和耐DFB个体的构成基因表达来弥补这一差距。pipiens。
Buchholz(德国联邦地球科学及自然资源研究所);Aman Chitkara(独立专家);Vincenzo Conforti(嘉能可);Grace Cook(Ramboll);Clint Cox(The Anchor House);Matteo Craglia(国际运输论坛);Alexandre Damiens(欧拉诺);Martin Dietrich Brauch(哥伦比亚可持续投资中心 [CCSI]);Sylvain Eckert(Infravia);Rod Eggert(科罗拉多矿业学院);Steven Fecht(Ramboll);Colin Hamilton(BMO 资本市场);Peter Handley(独立专家);Sara Hastings-Simon(卡尔加里大学);Daniel Hill(加拿大自然资源部);Kijune Kim(韩国锌业公司);Paul Kolisnyk(泰克金属);Luc Leboeuf(加拿大自然资源部);Courtney Lynn(EroCopper);Julien Masson(Eramet);Tom Moerenhout(哥伦比亚全球能源政策中心); Shinsuke Murakami (东京大学);Jane Nakano (战略与国际研究中心 [CSIS]);Junhyeok Park (韩国地质调查局 [KIGAM]);Brian Parkey (自由港麦克莫兰公司);Alicia Polo y La Borda (The Copper Mark);Mark Richards (力拓集团);Benoit Richebé (欧安诺集团);Katarina Svatikova (经合组织);Perrine Toledano (CCSI);Lyle Trytten (Trytten Consulting);Constanze Veeh (欧盟委员会) 和 Ke Wang (世界资源研究所)。
Buchholz(德国联邦地球科学及自然资源研究所);Aman Chitkara(独立专家);Vincenzo Conforti(嘉能可);Grace Cook(Ramboll);Clint Cox(The Anchor House);Matteo Craglia(国际运输论坛);Alexandre Damiens(欧拉诺);Martin Dietrich Brauch(哥伦比亚可持续投资中心 [CCSI]);Sylvain Eckert(Infravia);Rod Eggert(科罗拉多矿业学院);Steven Fecht(Ramboll);Colin Hamilton(BMO 资本市场);Peter Handley(独立专家);Sara Hastings-Simon(卡尔加里大学);Daniel Hill(加拿大自然资源部);Kijune Kim(韩国锌业公司);Paul Kolisnyk(泰克金属);Luc Leboeuf(加拿大自然资源部);Courtney Lynn(EroCopper);Julien Masson(Eramet);Tom Moerenhout(哥伦比亚全球能源政策中心); Shinsuke Murakami (东京大学);Jane Nakano (战略与国际研究中心 [CSIS]);Junhyeok Park (韩国地球科学及矿产资源研究所 [KIGAM]);Brian Parkey (自由港麦克莫兰公司);Alicia Polo y La Borda (The Copper Mark);Mark Richards (力拓集团);Benoit Richebé (欧安诺集团);Katarina Svatikova (经合组织);Perrine Toledano (CCSI);Lyle Trytten (Trytten Consulting);Constanze Veeh (欧盟委员会) 和 Ke Wang (世界资源研究所)。
缩略词 APT 高级持续性威胁 AOO 资产所有者/运营商 AWEA 美国风能协会 BES 大型电力系统 C2 指挥和控制 Cal-CSIC 加州网络安全整合中心 CESER 网络安全、能源安全和应急响应 CIP 关键基础设施保护 CIS 互联网安全中心 CIRT 网络事故响应小组 CISA 网络安全和基础设施安全局 CSIS 战略与国际研究中心 DHS 国土安全部 DMZ 非军事区 DOE 能源部 DoS 拒绝服务 DNI 国家情报总监 EERE(能源部能源效率和可再生能源办公室) EIA 能源信息管理局 E-ISAC 能源信息共享和分析中心 FBI 联邦调查局 FTP 文件传输协议 ICS 工业控制系统 INL 爱达荷国家实验室 IT 信息技术 LAN 局域网 NERC 北美电力可靠性公司 NERC CIP NERC 关键基础设施保护 OEM 原始设备制造商 OLE 对象链接和嵌入 OPC 用于过程控制的 OLE OT 操作技术 PAC 可编程自动化控制器PCC 公共耦合点 PLC 可编程逻辑控制器 PoC 连接点 RAT 远程访问木马 RTU 远程终端单元 SaaS 软件即服务 SCADA 监控和数据采集 SME 主题专家 TLS 传输层安全 US 美国 VPN 虚拟专用网络 WETO 风能技术办公室 WTG 风力涡轮发电机
外层空间对于满足公民的日常生活需求和 21 世纪世界经济的平稳运转至关重要 (ACSC, 20023; 太空基金会, 2023),同时它对军事行动也越来越重要,可以实现和扩大力量倍增器选项的数量,并在和平或战争时期开辟新的创新可能性。因此,一些军事大国正在积极寻求反太空能力,以干扰、破坏或阻止潜在对手的太空能力 (Brown, 2006; ACSC; AWC, 2023)。自 2018 年以来,安全世界基金会 (SWF) 和战略与国际研究中心 (CSIS) 的非机密开源报告每年都会记录越来越多的国家正在开发、测试和实施的反太空能力。目前,反太空能力大致可分为两类:动能和非动能。动能反卫星 (ASAT) 武器旨在通过碰撞或爆炸摧毁目标太空物体。非动能反卫星武器包括定向能武器、射频干扰和网络攻击。这两种不同的武器对目标卫星和太空环境的影响各不相同。动能反卫星武器旨在摧毁卫星,产生大量轨道碎片,并产生永久和不可逆转的影响。非动能反卫星武器可用于暂时或永久破坏或禁用卫星,其效果有时可以逆转。动能反卫星武器可进一步分为两个子类别;它们可以从地球发射时直接上升 (DA) 直接打击太空中的目标,也可以共轨,这意味着它们仅在进入轨道一段时间后才进行打击 (Weeden;Samson,2024 年;Swope 等人,2024 年)。
∗ 本文吸收并替换了之前以“消费准入和经济活动的空间集中:来自智能手机数据的证据”为标题发表的材料。感谢 Gabriel Ahlfeldt、Milena Almagro、Daniel Sturm、Gabriel Kreindler、Tobias Salz 以及会议和研讨会参与者的有益评论。我们感谢 Takeshi Fukasawa、Peter Defferebach 和 Yun-Ting Yeh 提供的出色研究协助。适用通常的免责声明。 “Konzatsu-Tokei (R)”数据是指在用户同意的情况下,通过 NTT DOCOMO, INC 提供的应用程序(包括地图应用程序 Docomo Chizu NAVI)从手机发送的个人位置信息构建的人流数据。这些数据被集体和统计处理,以隐藏私人信息。原始位置数据是每五分钟(最少)发送一次的 GPS 数据(纬度、经度),不包括指定个人的信息。本文件中提供的所有表格和图表的版权均属于 ZENRIN DataCom CO., LTD。我们还要感谢一桥大学的 Yaichi Aoshima 与 ZENRIN DataCom Co.,. LTD. 协调该项目;村田基金会、平和中岛基金会、鹿岛基金会、大林基金会、JSPS KAKENHI(拨款编号 21H00703)和一桥大学的资金支持;东京大学 CSIS 的联合研究支持(项目编号 954)。† 经济学系,270 Bay State Road,波士顿,马萨诸塞州 02215。电话:1-617-353-5682。电子邮件:miyauchi@bu.edu。‡ 创新研究所,2-1 Naka,国立,东京 186-8603,日本。电话:81-42-580-8417。电子邮件:nakajima.kentaro@gmail.com § 经济学系和 SPIA,JRR 大楼,普林斯顿,新泽西州 08544。电话:1-609-258-4016。电子邮件:red-dings@princeton.edu。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
里德·布莱克莫尔(大西洋理事会);罗伯托·博卡(世界经济论坛);丽娜·博勒·泽勒(维斯塔斯); Laura Casuscelli(欧洲风能);萨姆·考尼什(IIGCC); Leandro de Oliveira Albuquerque(巴西矿业和能源部);丽贝卡·戴尔(ClimateWorks 基金会); Miriam D'Onofrio 和 Sarah Ladislaw(美国国家安全委员会); Daniel Dufour(加拿大自然资源部);安德烈·埃克曼(GIZ);马丁·福森(NIBE); Marie-Laetitia Gourdin 和 Christin Töpfer(Vattenfall); Rishabh Jain 和 Dhruv 战士 (CEEW); Leif Christian Kröger(蒂森克虏伯 nucera); Thomas Kwan 和 Silvia Madeddu(施耐德电气); Jon Lezamiz Cortazar(西门子歌美飒);林晓(Botree Recycling Technologies);约翰·林达尔(ESMC); Michael Lippert(SAFT);Joseph Majkut(CSIS);Monika Merdekawat(东盟能源中心);Yasuko Nishimura 和 Atsushi Taketani(日本外交部);Thomas Nowak(欧洲热泵协会);Jared Ottmann(特斯拉);Gaurav Pundir(印度商务部);Marta Ramos Fernandez(空中客车);David Reiner(剑桥大学);Mark Richards(力拓集团);Agustín Rodríguez Riccio(托普索公司);Javier Sanz(Innoenergy);Oliver Sartor(Agora);Christian Schmidt(德国总理府);Ulrik Stridbæk(Ørsted);Jacopo Tattini(欧盟委员会);Peter Taylor(利兹大学);Denis Thomas(康明斯);Fridtjof Unander(Aker Horizons);Noé van Hulst(IPHE); Anne van Ysendyck(安赛乐米塔尔);David Victor(加州大学圣地亚哥分校);Natasha Vidangos(环境保护基金);Miki Yamanaka(大金工业)。