本节使用的能量单位是英热单位 (BTU)、千瓦时 (kWh)、千卡和加仑。BTU 是在海平面将 1 磅水的温度升高 1 华氏度 (°F) 所需的热量。由于其他能量单位都可以转换为等效的 BTU,因此 BTU 被用作比较不同资源相关能耗的基础。kWh 是电能单位,1 kWh 约等于 3,413 BTU,其中考虑了初始转换损耗(即从一种能量,如化学能,转换为另一种能量,如机械能)和传输损耗。天然气消耗通常以立方英尺或千卡来表示;1 立方英尺天然气约等于 1,050 BTU,1 千卡代表 100,000 BTU。考虑到炼油过程中所消耗的能量,一加仑汽油/柴油分别相当于约 125,000/139,000 BTU。
氧化镓是一种超宽带隙 (UWBG) 半导体,有望扩展电力电子、日盲紫外光电探测器、气体传感设备和太阳能电池等领域的功能和应用极限。[1,2] 它已成功应用于一些领域,包括荧光粉和电致发光 (EL) 设备、[3] 日盲光电探测器、[4,5] 光催化 [6] 和电力电子。[7,8] Ga 2 O 3 与许多其他多态氧化物体系(如 Al 2 O 3 、In 2 O 3 和 Sb 2 O 3 )相似,除了热力学稳定的单晶 β 相(C 2/ m)之外,至少还存在四个相。这些相包括菱面体 α -Ga 2 O 3 ( 3 ) R c 、立方 γ -Ga 2 O 3 ( 3 ) Fd m 、正交 ε / κ -Ga 2 O 3 ( Pna 2 1 ) 和立方 δ -Ga 2 O 3 ( 3) Ia 相。需要注意的是,δ 相的存在仍有待讨论,有人认为它可能是由 β 相和 ε / κ 相混合形成的。[9]
电话:(978) 318-8651 电子邮件:eva.m.szigeti@usace.army.mil 美国陆军工程兵团新英格兰区 (USACE) 的地区工程师已收到康涅狄格州交通部 (CTDOT) 的许可申请,文件编号为 NAE-2024-01826,允许在美国水域开展工作,地址为 2800 Berlin Turnpike, Newington, Connecticut, 06131-7546。这项工作拟定在康涅狄格州谢尔顿和德比 8 号公路下方的霍萨托尼克河上进行。站点坐标为纬度 41.315093/经度 -73.086237。该项目为 CTDOT 项目编号0126-0176,修复 Commodore Hull 桥,桥梁编号00571A。这项工作将涉及在美国水域 31,120 平方英尺(0.7 英亩)内永久排放填料,包括受潮汐影响的 Housatonic 河平均高水位 (MHW) 线以下的开阔水域。桥梁的 9 号和 10 号墩将使用六腿、两英尺高的预制混凝土千斤顶进行加固,以保护每个墩周围的河床,防止未来的冲刷,并加强现有结构。美国水域内的永久影响主要归因于混凝土千斤顶的安装。还提议对霍桑托尼克河主水位以下 3,470 平方英尺(0.1 英亩)的区域进行临时影响,主要与临时堤道通道有关。项目区域内没有潮汐湿地。该项目的施工将从驳船和 10 号码头东端的临时岩石堤道进行。施工期间,将在每个码头和工作区域周围安装临时浊度幕。驳船预计将从长岛海峡出发,向上游行驶约 12 英里到达项目现场,并且可能同时在两个码头上进行施工。首先将使用灌浆袋和混凝土填充物填充 9 号码头基础下方的现有冲刷坑,然后在两个码头周围放置千斤顶。永久性填埋排放总量将达到 1,128 立方码:860 立方码用于混凝土千斤顶,32 立方码用于灌浆袋,29 立方码用于导管灌浆,207 立方码用于原生或补充河床材料。临时堤道将建在高地集结区边缘 65 英尺外,靠近 10 号码头的河流中。项目完成后,堤道将被完全拆除,河岸将恢复。随附的计划中显示了这项工作,标题为“环境许可计划国家项目编号。126-176,修复桥梁编号。0057A1(COMMODORE HULL BRIDGE),8 号公路横跨 HOUSATONIC 河,谢尔顿和德比市”,共 12 张,日期为 06/17/24。该项目旨在通过使用最佳管理实践来避免和尽量减少对美国水域的影响,包括在项目现场周围安装临时侵蚀和沉积控制和浊度幕,以尽量减少潜在沉积物和混凝土对水质的负面影响
描述该项目降低了大斯特兰德沿岸因沿海风暴造成人员和财产损失的风险。项目成本由联邦政府分担 65%,非联邦政府分担 35%。项目涵盖三个可分离的河段,每个河段都有不同的非联邦赞助商。在 50 年的分析期内,根据河段不同,有五次 8 年或 10 年的定期养护。材料的时间和数量取决于项目的表现以及影响该地区的风暴的频率和严重程度。初始养护工程于 1996 年至 1998 年间修建,共放置了 640 万立方码的材料,耗资 5130 万美元,项目总长度为 25.4 英里。由于沿海风暴,第二次定期养护主要由防洪和沿海紧急情况 (FCCE) 补充资金资助,无需与当地赞助商分担成本。此项工作于 2017 年 6 月至 2019 年 7 月完成,共铺设了 360 万立方码的材料,耗资 7700 万美元。
武装部队可以通过多种方式从异构计算中获益。例如,尽管雷达处理系统通常部署在大型巡洋舰、潜艇和类似平台上,但这些车辆仍必须应对与军队其他部分相同的尺寸、重量和功率 (SWaP) 限制。传统的雷达处理系统可能需要四立方英尺的空间来容纳一台重量超过 50 公斤、功耗为 2000W 的 18 刀片服务器,才能实现 576 GFLOPS 的峰值处理速度。将其与现代 VITA-75 系统(例如 ADLINK 的 HPERC 系列平台之一)进行比较。为了达到几乎相同的 574 GFLOPS,ADLINK 的无风扇 HPERC 仅占 0.8 立方英尺,重量不到 5 公斤,功耗仅为 200W。这在一定程度上是由于板载 GPU 承担了大部分雷达信号处理工作负载。
拟议的奖励活动将包括外展,数据分析,建模,工程和设计,实验室研究和现场测试。外展活动将包括举办研讨会和招聘管道开发,以服务于社区中历史上边缘化的人群。立方(马萨诸塞州贝德福德),北卡罗来纳大学教堂山(Chapel Hill,北卡罗来纳州),国家可再生能源实验室(NREL; Golden,Co)和托莱多大学(俄亥俄州托莱多)将设计,开发和制造孔织布式薄膜薄片,太阳能细胞和模块。立方还将进行电气和材料表征,合成化学,数据分析,应力测试和屋顶现场测试。桑迪亚国家实验室(SNL;新墨西哥州阿尔伯克基)和NREL也将进行户外现场测试。SNL和NREL活动将作为商业化技术(PACT)研究小组的Perovskite PV加速器的一部分。
摘要:这项工作旨在研究立方SR 3 Mn(M = P和AS)抗渗透岩的电子,弹性,光学和热电特性。在这项工作中首次研究了立方SR 3 Pn的特性,而SR 3 ASN的特性与文献中的其他理论结果进行了比较。在整个研究中,都使用了具有GGA-PBE功能的量子意式浓缩(QE)包中实现的密度功能理论(DFT)。sr 3 pn和sr 3 ASN被发现在化学和机械上稳定,优化的晶格参数分别为5.07Å和5.11Å。的结果还表明,两种化合物是P型半导体,直接带隙为0.56 eV,对于各个化合物为0.45 eV。还预计材料具有出色的光学特性,包括在可见的和紫外线区域中以10 5 cm -1的高度吸收,因此是有希望的光电材料。此外,这两种材料的计算出的热电性能强烈表明两种材料是热电应用的潜力。
摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
摘要:高熵合金的设计原理是将多种化学元素以相等或接近相等的比例混合,以创建具有独特性能的新合金,例如高强度、延展性和耐腐蚀性。高熵合金的某些性能可以通过引入新的掺杂元素来调整,掺杂元素的选择需根据工作条件而定。研究了 Ti 掺杂对高熵合金 CoCrFeMoNi 微观结构、显微硬度和弹性模量的影响。微观结构分析表明,合金的核心结构由面心立方 (FCC) 和体心立方 (BCC) 相组成,同时形成了 Laves 相。Ti 的加入使合金晶粒细化,降低了枝晶间和枝晶区域之间的 Mo 浓度差。Ti 掺杂的结果是,合金的显微硬度从 369 HV 0.2 增加到 451 HV 0.2。 Ti 掺杂使断裂强度值增加了一倍,尽管 CoCrFeMoNi 合金的弹性模量没有发生显著变化。