项目要求 维护性疏浚很少需要,但目前是必要的。联邦水道内目前沉积物积压量为 847K 立方码。 整个港口和水道中部半宽内可用深度的损失超过 4 英尺。 未来的水道维护性疏浚将需要一个放置位置。需要资源进行沉积物采样、特性描述和分析以支持疏浚。 港口和河流是超级基金场地,美国环保署的下一次审查将在 2025 年进行。 美国环保署于 2013 年完成了环境疏浚,从河流和内港清除了 86K 立方码并放置在垃圾填埋场。该行动实现了外港 15 英尺和内港 11 英尺的维护深度。
使用安装在 J-PARC 材料与生命科学实验设施的单晶衍射仪 SENJU (BL18) 和超高分辨率粉末衍射仪 SuperHRPD (BL08) 收集飞行时间中子衍射数据。如图 1(a) 所示,在 MASnBr 3 的五个相中观察到的衍射图案彼此明显不同,表明晶体结构通过四个相变依次变化。该结果需要重新考虑 g、d 和 e 相的结构,其中 b - g 相和 d – e 相之间没有观察到明显的结构变化[1]。对于 MASnI 3 ,如先前报道的那样[2][3],识别出三个具有不同结构的相(图 1(b))。最低温相的结构仍然不确定,但 b 相和 g 相之间衍射图案的剧烈变化表明结构对称性从四方晶系到三斜晶系显著降低。立方a相单晶结构分析表明MA分子的质心位于立方晶胞中心之外,用最大熵法合成的分子核密度沿立方轴呈现各向异性分布。这些趋势在MASnBr 3 中表现得更为明显,表明X = Br晶体中有机-无机相互作用的影响更强。
摘要 — 增材制造为创新天线和微波元件提供了新的可能性。为了充分发挥其潜力,必须充分利用 3D 打印技术提供的功能。3D 打印结构化电介质目前在这方面受到广泛关注。然而,表征这种晶体结构的介电性能并不容易,而且经常需要对这种性能做出假设。本文展示了在具有不同填充率的简单立方 (SC) 和面心立方 (FCC) 晶体几何中,增材制造结构化电介质的介电常数和损耗角正切的表征。将测量结果与 Maxwell-Garnett 有效介质近似预测的值以及从长波长极限的三维平面波展开法 (PWEM) 中提取的有效折射率进行了比较。
该行业具有独特的特点,水资源短缺和炎热天气等恶劣和不适宜的环境条件会影响其流程和产出。沙特王国政府认识到该行业对粮食和水资源安全极其重要,致力于以各种方式支持该行业,进行多项组织改革以创造刺激增长的可持续环境,并重组该行业以实现国家目标。这些措施取得了多项成就,包括大幅减少不可再生地下水的使用量,从 2015 年的 190 亿立方米减少到 2022 年的约 100 亿立方米。2022 年粮食自给率超过 50%,代表我们朝着实现粮食安全迈出了重大一步。
Ti合金由于其出色的结构,机械和生物学特性而在骨修复或再生领域越来越关注。在这项研究中,设计了由简单的立方(结构A)组成的六种类型的具有不同支柱半径的复合晶格结构,以身体为中心的立方体(结构B)和以边缘为中心的立方体(结构C)。首先通过有限元(FE)方法对设计的结构进行模拟和分析。然后通过选择性激光熔化(SLM)制造具有优化单位细胞和Strut半径的商业上纯Ti(CP - Ti)晶格结构,并且表征了尺寸,微观图和机械性能。结果表明,在六种类型的复合晶格结构中,BA,CA和CB结构组合表现出较小的最大von-Mises应力,表明这些结构具有较高的强度。基于应力/特定表面积与支撑杆半径的拟合曲线,BA,CA和CB结构的优化支撑杆半径分别为0.28、0.23和0.30 mm。它们相应的压缩屈服强度和压缩模量分别为42.28、30.11和176.96 MPa和4.13、2.16和7.84 GPA。带有CB单位结构的CP-TI具有与皮质骨相似的强度和压缩模量,这使其成为潜在的软骨下骨修复体的候选者。
湿度是空气中的水蒸气量。如果空气中有很多水蒸气,则湿度将很高。湿度越高,外面感觉越湿。相对湿度是实际上空气中的水蒸气的量,其表示为空气可以在相同温度下容纳的最大水蒸气量的百分比。在寒冷的-10摄氏度(华氏14度)上考虑空气。在该温度下,空气最多可以容纳每立方米的2.2克水。因此,如果摄入-10摄氏度时,每立方米有2.2克水,我们的相对湿度很不舒服。如果在-10摄氏度的空气中有1.1克水,我们的相对湿度为50%。
工作:拟议工作将包括在 2.75 英亩的沼泽湿地 (PEM) 中排放约 5,000 立方码的岩石和土壤,以及在圣乔河一条未命名支流的正常高水位线以下和 60 英尺线性英尺沿线排放 200 立方码的岩石。该项目拟建 9 个新机库、一个扩大的停机坪区域(有 7 个系留位置)、将拟议的基础设施扩建与现有滑行道和跑道连接起来的滑行道、通道以及所有相关的涵洞、路缘、水管、地下排水管道、照明、沥青路面、雨水和公用设施。基础设施扩建的土方工程将使用挖掘机、反铲、自卸卡车、滑移装载机和压实设备完成。结构填料、采石场碎石、碎石和进口土壤将从干净的当地来源获取。
任何在 INL 中作为 TRU 废物储存的放射性废物,其产生日期为 1995 年 10 月或更早。这包括从 TSA 储存中回收的所有废物,以及 1995 年作为 TRU 储存的所有废物。该容量是根据对 1995 年储存的废物清单中存在的容器数量和类型的估计得出的,在签署 ISA 时商定约为 65,000 立方米,但实际容量超过了 65,000 立方米。只有重新包装的废物容器(其主要内容或特定物品(例如多氯联苯 ( PCB ) 电容器)与 1995 年容器直接相关)才被视为遗留容器。在处理遗留废物期间受到污染的装有新物品(例如过滤器、真空吸尘器、个人防护设备 ( PPE ))的容器被视为新产生的废物。
uan-Yu Jau 正在努力制造世界上最小的原子钟,一种可以极其精确地计时的设备。如果成功,他和他在桑迪亚的团队将制造出比方糖还小的原子钟。但他并不是唯一一个挑战微型钟表极限的人。去年,美国国防高级研究计划局向研究团队发出挑战,要求制造更小、更精确的时钟。Yuan-Yu 领导着从事这项工作的桑迪亚团队。Yuan-Yu 说:“他们希望所有东西的体积都在 1 立方厘米,目前还没有这种尺寸的原子钟。”他的核心设计甚至更小——长约 1 厘米,宽和高仅为 2 毫米,总体积为 0.04 立方厘米。DARPA 要求这些设备在一周后准确度在百万分之一秒以内。