计划为未来的航空和太空旅行提供燃料。3 因此,积极的电极材料研究活动和 LIB 产量的激增导致价格在过去十年中下降了 85%。随着对能源及其存储的需求呈指数级增长,全球储能市场预计在未来十年将增长 4260 亿美元,而全球 LIB 市场已经达到 500 亿美元大关。4 从 LIB 时代开始,它主要依赖于昂贵金属的不间断供应,例如钴、镍、锰、铝、铁、铜和锂。另一方面,基于这些金属的阴极材料现在引起了与原材料可用性、采矿和合成成本、供应链瓶颈、地缘政治局势以及毒性和回收等生命末期问题有关的严重担忧。 5 因此,眼前的挑战不仅在于解决这些问题,而且还要提高现有 LIB 的存储容量、电池电压和耐用性,以满足未来的需求。这带来了更绿色、更可持续的电池的概念,其中包含对环境无害、经济、丰富和更安全的有机电活性材料。本综述重点介绍过去五年来以小分子、金属配合物和有机/金属有机框架 (MOF) 等各种形式应用于 LIB 的有机正极材料的最新研究成果。有机材料由地球上丰富的元素组成,例如 H、C、N、O、S 和 P。除了较低的环境足迹、能源经济合成、成本和回收利用外,有机氧化还原材料最吸引人的特点之一是高结构和性能可调性(图 1)。 6 近年来,开发有机材料的努力主要集中在对含有最常见氧化还原单元(即羰基)的有机分子进行结构改性。 7 这是因为锂离子电池的充电/放电电位、比容量、循环稳定性和循环速率取决于材料的分子结构。对于
目前,我们不进行靶标识别,而是依靠已知的已验证靶标。由于 PROMPTDegrader™ 药物属于经典小分子组,我们认为与其他蛋白质降解形式(例如 PROTAC、LYTAC、分子胶)相比,这可能具有一些优势。例如,我们不必与 PROTAC 等拥挤的 IP 空间竞争。此外,与相对较大且复杂的分子(例如 PROTAC)相比,常规小分子可以设计成具有更好的 PK 和细胞渗透特性,并且被认为不易代谢。此外,它们更容易制造,商品成本更低。由于我们的 PROMPTDegrader™ 分子默认诱导的 IDR 蛋白降解不依赖于蛋白质降解系统的一种特定酶(例如特定的 E3 连接酶),而是由几种降解途径驱动,我们预计我们的方法可以减少耐药性的产生。
化学探针是了解生物系统的重要工具。然而,由于靶标和潜在化合物的组合空间巨大,传统的化学筛选无法系统地应用于寻找所有可能的药物靶标的探针。在这里,我们展示了一个克服这一挑战的新概念,即利用高通量代谢组学和过表达来预测药物-靶标相互作用。收集了用来自化学库的 1,280 种化合物处理的酵母的代谢组谱,并将其与可诱导的酵母膜蛋白过表达菌株的代谢组谱进行比较。通过匹配代谢组谱,我们预测了哪些小分子靶向哪些信号系统并恢复了已知的相互作用。在所研究的 86 个基因中生成了药物-靶标预测,包括难以研究的膜蛋白。测试和验证了这些预测的一个子集,包括布洛芬对 GPR 1 信号的新靶向。这些结果证明了使用高通量代谢组学预测真核蛋白的药物-靶标关系的可行性。
蜂蜜蜜蜂是探测宿主的强大模型系统 - 近距离菌群相互作用,也是自然生态系统和农业的重要传粉媒介物种。虽然细菌生物传感器可以对宿主与其相关的菌群之间发生的复杂相互作用提供批判性的见解,但缺乏非侵入性的肠道含量进行采样的方法,以及对工程师Symbionts的有限遗传工具,到目前为止,它们在蜜蜂中的发展促成了它们的发展。在这里,我们构建了一个多功能分子工具套件,以基因修改共生体,并在蜜蜂中首次报告了一种用于采样其粪便的技术。我们将天然的蜜蜂肠道细菌snodgrassella alvi作为IPTG的生物传感器,其工程细胞通过表达荧光蛋白的表达来稳定地定居于蜜蜂蜜蜂的肠道,并以剂量依赖性的方式暴露于骨骼。我们表明可以在肠道组织中测量荧光读数或在粪便中无创测量。这些工具和技术将使工程细菌的快速建立能够回答宿主 - 近距离微生物群研究中的基本问题。
实现细胞内无载体货物输送的一种方法是通过施加强脉冲电场使细胞膜瞬时通透。施加电场时,立即产生的效应是在细胞膜上感应出跨膜电压(见词汇表)[1]。如果跨膜电压足够强,细胞膜就会暂时通透,从而允许外源货物进入细胞(图 1 A)。在文献中,术语“电穿孔”和“电通透”经常互换使用,以描述这一物理输送过程。在此过程中感应出的跨膜电压强度可导致细胞不可逆或可逆通透。当旨在输送可诱导细胞功能变化的分子(例如瞬时基因表达或基因组编辑)时,可逆细胞通透是首选。在整个评论中,我们使用术语电转移来描述通过应用电脉冲跨细胞膜(细胞外到细胞内,或反之亦然)的分子转移。
基因组编辑技术在生物体中引入了有针对性的染色体修饰,但受限于无法选择性地修改重复的遗传元件。本文我们描述了过滤编辑,这是一种基因组编辑方法,它将第 1 组自剪接内含子嵌入重复的遗传元件中,以构建可以选择性修改的独特遗传地址。我们将含内含子的核糖体引入大肠杆菌基因组,并使用 CRISPR/Cas9 和多重自动基因组工程对这些核糖体进行有针对性的修饰。转录后内含子的自剪接产生无疤痕的 RNA 分子,从而生成一个复杂的靶向组合变体库。我们使用过滤编辑来共同进化 16S rRNA,以调整核糖体的翻译效率,并共同进化 23S rRNA,以分离抗生素抗性核糖体变体,而不会干扰天然翻译。这项工作为设计聚合具有不同化学性质的非生物单体的突变核糖体奠定了基础,并扩大了基因组工程的范围,以实现重复 DNA 序列的精确编辑和进化。
分子自旋电子学的目标是利用单个或少数分子作为自旋电子学应用的功能构建块,直接依赖于分子特性或分子与无机电极之间界面的特性。由于设备不断向小型化发展,现有硅基电子产品的摩尔定律即将终结,这些目标显得尤为重要。尽管人们对分子作为自旋传输介质的兴趣最初源于其固有的弱自旋弛豫机制导致的长自旋寿命,[5] 但人们很快意识到分子可能提供传统自旋电子学所不具备的额外选择。这是因为与无机自旋电子学中使用的材料不同,分子的结构、化学和电子特性可以以几乎无限多种方式以原子精度进行调整。当分子与无机电极接触时(这是实现单个或少数分子设备的先决条件),它们的界面相互作用可以产生标准无机界面无法实现的功能。 [3,4]
药物发现和开发是一个复杂的过程,需要投入大量的时间和金钱。项目通常从根据靶标与疾病的关联性选择靶标开始,并评估可能的“可药性”。1 随后,可以决定是继续采用传统的小分子方法、生物制剂(抗体或片段)还是采用正在开发的许多新方法之一,例如反义寡核苷酸或靶向蛋白质降解剂。项目非常重视疗效和靶标与疾病的关联性。但是,由于大多数项目的失败都是由于安全性,其中约 25-50% 是由于药物靶标本身,2 因此必须将安全性作为药物设计的一部分。从安全的角度来看,每种方法都有自己的优势和风险。例如,小分子可能与脱靶化学毒性有关,例如 hERG 易感性或肝脏药物转运蛋白抑制。类似地,抗体和寡核苷酸可能与免疫原性和/或肾毒性有关
储能电池的辐射耐受性是探索或核救援工作的关键指数,但没有对LI金属电池进行彻底的研究。在这里,我们系统地探索了伽马射线下Li金属电池的能量存储行为。在伽马辐射下Li金属电池的孔子降解与阴极,电解质,粘合剂和电极界面的活性材料有关。特定的,伽马辐射会触发阴极活性材料中的阳离子混合,从而导致极化和容量差。电解质中溶剂摩尔的离子化促进了LIPF 6的分解及其分解,分子链断裂和交联削弱了粘合剂的键合能力,从而导致电极破裂并减少活性材料利用。 此外,电极界面的恶化会导致LI金属阳极的降解并增加细胞极化,从而加快了Li金属电池的灭亡。 这项工作为辐射环境中的li batteries发展提供了显着的理论和技术证据。电解质中溶剂摩尔的离子化促进了LIPF 6的分解及其分解,分子链断裂和交联削弱了粘合剂的键合能力,从而导致电极破裂并减少活性材料利用。此外,电极界面的恶化会导致LI金属阳极的降解并增加细胞极化,从而加快了Li金属电池的灭亡。这项工作为辐射环境中的li batteries发展提供了显着的理论和技术证据。
法国马赛 ‡ 目前地址:艾克斯马赛大学,CNRS UMR 7257,生物大分子结构与功能,163 avenue de Luminy,13288,马赛,法国。# 通信地址:eddy.pasquier@inserm.fr 分类 大分类:生物科学 小分类:药理学 关键词 癌症;药物靶标预测;胶质母细胞瘤;多药理学;甲苯咪唑;MAPK14 作者贡献 EP 构思了这项研究,分析了数据并撰写了手稿。JAB 进行了大部分实验,分析了数据并起草了部分手稿。KC 纯化了 MAPK14 蛋白并与 SB 一起进行了 TSA 和 ITC 实验。MLG 进行了转录组分析,LH 进行了分子建模工作。他们都撰写了部分手稿。 MF 进行了 ABL1 和 PT 的 TSA 实验,而 FD 进行了 nanoDSF 实验。YC 和 XM 参与了数据分析和手稿准备。PB 进行了计算机模拟目标预测。所有作者都阅读了手稿并提出了改进意见。此 PDF 文件包括:正文 图 1 至 7 表 1 和 2 补充图 1 至 4 补充表 1 和 2
