数字微弹性平台是含有含有液体的固定固体胶囊。这些平台可以是由固体壳封装的液滴,也可以是包含由聚合物基质制成的珠子的液体。壳或聚合物矩阵充当保护性屏障,可将污染物降至最低,从而影响封装含量的功能。此外,可以设计壳或矩阵以变得透明和半渗透,允许光穿透,气体交换和分子分解。13 - 15因此,这些平台代表了包括微藻在内的各种细胞类型的封装和生长的有利环境。最近,我们的团队成功地尝试捕获和培养液体大理石内部的微藻细胞 - 典型的数字微弹性弹药平台,其带有微/纳米颗粒制成的多孔壳。通过用二氧化硅纳米颗粒包含含微藻的水滴,我们创建了一个具有透明和多孔外层的显微镜光生反应器,在5天培养期内可在细胞密度增加30倍。16此外,聚合物基质(例如水凝胶)已用于微藻固定和随后的培养。水凝胶珠可以通过与周围培养基的有效气体和营养交换来为可持续的细胞生长提供稳定的环境。这些此外,鲁棒的水凝胶三维基质在培养期间将微藻细胞固定在珠子中,最大程度地减少了细胞泄漏到周围环境中的风险,并促进了有效的细胞检索过程。
摘要有机肥料和生物肥料对土壤结构和微生物种群具有良好的影响,例如可以改善农业系统整体健康的研究。这项研究重点介绍了Fenugreek的增长,产量的特征和经济考虑,该特征是Fabaceae家族的成员,并以其烹饪和治疗益处而闻名。在Rabi Season 2023-24期间,在Amity University Noida(北方邦)的Amity农业研究所(Amity University Noida)在Amity University Noida(北方邦)进行了一项研究,以探讨使用不同的有机肥料和生物肥料对Fenugreek生产的影响。该实验是在随机块设计中布置的,其中包括三个重复,包括六种治疗方法。该研究使用现场试验来比较这些方法的传统方法的结果并分析其经济可行性。结果表明,使用有机输入,尤其是与氮杂杆菌混合的Vermicompost,可显着改善植物的生长和产量。生长参数的最佳结果。植物高度(34.33 cm),以及每植物的分支数(11.77)的记录在用(T4)(T4)(Vermicostost +Azotobacter)的地块中记录,此外,使用Biio Fershizers与有机肥料相比,将Biio Fertilizers与仅使用的有机肥料产生更高的净回报率和益处率的含量相比,使用了有机肥料。数字评估证明了使用有机肥料组合的经济可行性,T4(Vermicompost + Azotobacter)产生了119,389卢比的最高净回报。这些发现突出了可持续的胡芦巴种植中有机投入的潜力,从而为农民和利益相关者提供了有用的见解,以促进环保农业实践。
由于较高的增殖能力,多能分化,免疫调节能力和缺乏道德问题,牙齿纸浆干细胞(DPSC)是有希望的临床应用候选者。目前,关于DPSC的临床研究处于早期阶段。未能获得临床有效结果的原因可能是DPSC的生产过程问题。由于DPSC的不同制备方法和试剂制剂,细胞特征可能会受到影响,并导致不一致的实验结果。临床级DPSC的准备远未准备就绪。要实现临床应用,必须将干细胞从实验室等级运输到临床等级至关重要。本综述比较并分析了实验数据,以优化从提取到复苏的DPSC的制备方法,包括研究文章,发明专利和临床试验。讨论了各种方法和潜在临床应用的优势和缺点,并提出了可以提高DPSC质量临床应用质量的因素。的目的是总结当前在建立标准化,可靠,安全和经济的方法来将来准备临床级细胞产品的方法中。
出于多种原因,对小米有新的兴趣。首先,小米是高度营养的(Dayakar Rao等,2017),除了其他必要的营养素(例如维生素,氨基酸和脂肪酸)(Nithiyyanantham et al。,2019年)。第二,由于其形态生理学,分子和生物化学特征,对水应力和最佳温度具有内在的耐受性,这些特征比主要谷物更好地耐受环境压力的耐受性(de Vries et al。,2020; Gupta et al。,gupta et al。第三,是C 4庄曲,小米具有更大的潜力来利用大气co 2用于每单位使用的水的生物量积聚,因此被识别为具有低碳和水的农作物。与玉米(Zea Mays L.),棉花(Gossypim hirsutum L.)和大米(Oryza sativa L.)(16-20周)相比,小米(10-12周)的短期生命周期(10-12周)有助于缓解压力。小米是可靠的食物作物,对于旱地地区的资源贫乏的农民,降雨不确定,生长期短,土壤水分有限和土壤肥料不良,因为它们是气候溶性的作物(Sukanya等人,2022年)。可以在各种土壤,气候和作物系统中生长,使其成为农民的多功能选择。由于这些属性,小米被认为是气候 - 智能作物。由于小米主要是由低外部投入(尤其是化学物质)生产的,因此将其视为环保。因此,小米可以在低收入和营养不良的人口的生计中发挥至关重要的作用,提供粮食和营养安全,并帮助实现联合国联合国的前三个可持续发展目标(SDG)(减少贫困,零饥饿,良好的健康和幸福)。然而,尽管在过去几十年中,他们在印度和其他地方的耕种在印度和其他地方的耕种仍在下降,因此吸引了世界各地的政治制造者的注意。印度庆祝2018年为“全国小米”,并提高了对无与伦比的小米属性的认识。
覆盖作物种植可以成为缓解农业气候变化的重要策略,因为它可以增加土壤碳储量并提高种植系统的资源效率。另一种缓解措施是收获覆盖作物,并利用其生物质替代温室气体密集型产品,例如化石燃料。在某些条件下,收获覆盖作物生物质还可以降低与覆盖作物种植相关的氧化亚氮(N2O)排放升高的风险,从而抵消大部分的缓解潜力。然而,收获覆盖作物也会降低土壤碳封存潜力,因为生物质会被从田间移除,而且种植覆盖作物需要额外的田间作业,这会产生温室气体排放。为了探索这些协同作用和权衡利弊,本研究调查了在斯堪的纳维亚半岛南部采用不同管理策略种植油籽萝卜覆盖作物的生命周期气候效应。将三种替代方案(将生物质并入土壤;割草并收获地上生物质;拔根并收获地上和地下生物质)与无覆盖作物的参考方案进行了比较。在割草和拔根情景下,收获的生物质被运送至沼气厂转化为升级的沼气,消化物则作为有机肥料返回田地,用于后续作物的种植。在并入、割草和拔根情景下,覆盖作物种植的气候变化减缓潜力分别为0.056、0.58和0.93 Mg CO 2 -eq ha − 1。并入情景下的土壤碳含量最高。
已有70多年的历史,无数的研究计划旨在开发基于微藻的产品和服务,例如食品和生物燃料,废水处理和碳封存(Borowitzka,2013b; Craggs et al。不幸的是,尽管这项研究在微藻生物学,反应堆设计和生物量处理方面产生了显着的知识进步,但微藻类的培养仍然是一个围绕一些高价值食品应用的新兴行业(Plouviez等,2022年)。要了解为什么学术期望和商业现实之间仍然存在如此差距,这篇意见文章Brie trip y审查了商业微藻生产的最新技术,并讨论了限制其工业吸收的约束。值得注意的是,本文既不打算对领域的研究进展进行全面综述,也不会挑战微藻生物技术的巨大潜力。相反,我们试图提高人们对当前期望与微藻种植现实之间差距之间的认识,以便更好地为未来的投资提供对领域的投资。
马铃薯是全球数百万的主食,发现自己处于关键时刻。该行业正在挑战复杂的挑战矩阵,从气候变化和环境可持续性到不断发展的市场需求和全球粮食安全问题。这些挑战正在塑造当下并定义马铃薯种植的未来轨迹。这种转变的核心是对可持续性和韧性的越来越重视。农业部门,包括马铃薯行业,越来越多地认识到有必要采用对经济友好,经济上可行且对社会负责的实践。这种转变是由对我们生态系统的相互联系以及农业实践对地球及其居民的影响的更深入的见解所驱动的。应对这些挑战,来自不同部门的利益相关者聚集在一起。这种合作努力的重点是可持续马铃薯品种的研究和开发。这项努力以几种新兴趋势为标志,每个趋势都涉及可持续性和韧性的不同方面。从利用替代基因研究到采用新的农业实践,马铃薯行业正在转变。这确保了可持续性,并为其他农业部门树立了先例。当我们深入研究这些趋势时,很明显,马铃薯种植的未来正在重写。
摘要。本文分析了机器人系统对现代农业的影响。集成了高级技术的关键方面,例如饲养过程的自动化,牧场管理和自动作物收获。讨论了在农场成功实施创新解决方案的示例,包括移动饲料搅拌机,自动化小牛饲养系统,智能土壤样品收集器和飞行的自主花园机器人。特别注意应用这些技术的经济效率和可持续性,以及它们对改善工作条件和减少环境影响的影响。还讨论了与高初始投资,合格人员的需求以及旧农场结构对新技术的改编有关的挑战和问题。的结论,强调了其在面对日益增长的全球挑战时在实现可持续性和提高生产率方面的作用。
最小:精确量的高纯度化学品 复杂:大量部分未知的化学化合物 选择性:包含选择性促进特定微生物生长的化合物 差异性:包含指示剂。用于区分在同一培养基中生长的一种微生物与另一种微生物
提出利用有效微生物(EM)对油棕空果串(EFB)栽培草菇进行预处理以提高产量。观察不同EM剂量对菌丝生长和产量的影响。处理采用两个参数的组合:堆肥时间(5 天 (T1)、10 天 (T2) 和 15 天 (T3))和 EM 剂量(0% (E1)、10% (E2)、20% (E3) 和 30% (E4)。同时分析了 EFB 的成分以比较预处理前后的变化。结果显示,与其他处理相比,20% 和 30% 的 EM 预处理可显著加快菌丝生长速度。在 T2E4(10d,30% EM)下观察到 V. volvacea 的最高产量,为 271.5±57.28 g 或生物效率 (BE) 为 9.11%。在 T1E3(5d,20% EM)下获得的子实体 (FB) 平均重量最高,为 14 g,而 T2E4(10d,30% EM)下的子实体平均重量最高,为收获的 FB 数量最多,为 42。在所有测试处理中,纤维素、半纤维素和木质素均减少。EM 剂量和堆肥时间均显著影响 V. volvacea 的产量。EFB 纤维是 V. volvacea 栽培的潜在底物。