本研究旨在确定和描述越南永隆省三茬、双茬和单茬稻陆作稻田土壤的理化性质。结果表明,永隆省水稻种植土壤的 pH 值相对较低(4.3–5.4)。土壤中的大多数物理参数都在适合植物生长的范围内。土壤中的电导率(EC)、总溶解盐和交换铝(Al 3+ )都在正常范围内。总阳离子交换量和锌不在植物生长的实际范围内。总氮(TN)、总磷(TP)、总钾(TK)和总有机质(OM)含量分别从中等到良好、丰富、中到差和丰富不等。土壤中的交换性盐基阳离子分别为钾(K +)、钠(Na +)、钙(Ca 2+)和镁(Mg 2+),浓度分别为低、中和高。锰(Mn)含量适合植物生长。值得注意的是,OM、TP、交换性盐基阳离子和Mn含量最高均出现在三茬水稻中,而TN和TK含量最高则出现在单一水稻旱作作物中。通过聚类分析,可将土壤样品监测点数由13个减少到5个,以保证研究区土壤理化性质的代表性。结果还表明,不同水稻种植土壤的土壤质量存在差异,主要是由于交换性Al 3+ 、EC、土壤结构和密度等因素造成的。本研究结果为研究区农业生产中的可持续土壤管理提供了有用的科学信息。
1深圳分公司,广南现代农业实验室,合成生物学的主要实验室,农业和农村事务部,农业基因组学研究所,中国农业科学院,中国农业科学院,中国农业科学学院,中国莫尔·莫尔(MOLEC)kiral of of MOLEC BIOLICAL,RICE ARIVALT of RICURTALT of CRIMULT of CRIAMURT of CRIAMURT of CRIMULT of CRIMULT of CRIGURT ERISTORATY of CRIPATION of CROMIDATIA Pathogens and Insects, Zhejiang University, Hangzhou, China, 3 Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States, 4 Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China, 5 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative南京农业大学固体有机废物资源利用创新中心,中国南京
工业工程系,巴布尔·诺什瓦尼(Babol Noshirvani)技术大学,巴布尔,伊朗摘要农业活动对环境产生了不利影响,通过排放温室气体并消耗大量淡水。此外,水果构成用于平衡饮食的农产品的重要组成部分。尤其是石榴是不同文化的人们使用的最常用产品之一。在这项研究中,开发了多个客观的数学模型,以通过专注于选择最佳培养过程并确定石榴供应链设施之间的最佳材料流来平衡可持续性维度。提议的模型最大程度地利用了由于耕种过程选择和建立植物而创造的就业机会的总利润和数量。它还通过最大程度地减少石榴植物中的肥料,农药和含水量来解决环境影响。该模型还考虑了石榴果皮和种子的反向流,以重新接收这些产品的价值,通常称为废物。伊朗马桑达省的一个真实案件被考虑用于验证开发的模型。最后,对问题的影响因素进行了全面的敏感性分析,并提出了管理意义。关键字:可持续性,农业供应链,前向和反向流动,石榴,耕种过程,水消耗1。这些问题强调了在农业部门的可持续性维度之间建立平衡的重要性。引言发达国家和发展中国家最重要的经济部门之一是农业,它影响了粮食供应,健康和政治问题,除了经济以外[1]。此外,由于其独特的特征,包括食品质量的重要性以及价格,气候和对各种食物的需求的变化,农业供应链引起了从业者和研究人员的注意[2]。此外,由于农业在经济,社会和环境中的重要作用,除了政府法规和环境意识之外,考虑到可持续性维度的有效供应链网络的设计和应用在过去几年中引起了研究人员的关注。农业部门对环境产生负面影响,因为据报道它是淡水最大的消费者,也是世界上第二大温室气体的发射极。农业在全球温室排放中的份额以及顶级农业国家的可再生淡水资源的趋势,强调了上述考虑农业环境方面的原因[3]。此外,农业中农药和肥料的大量消费会导致温室气体的排放,例如一氧化二氮和甲烷,包括空气,土壤和水,包括空气,土壤和水,污染自然资源并威胁人口健康的各种媒体。此外,材料的反向流将导致从通常称为废物的材料中获得额外的值[4]。相反,农业也对社会和经济产生了积极影响,提供了基本和重要的收入,就业和食品的来源,尤其是对于世界上的农村人口。在某些行业,根据产品的特征,收集的废物可以输入
亚类球菌包括大量的原生动物寄生虫,包括人类的重要病原体和诸如弓形虫弓形虫,新孢子虫,eimeria spp。和cystoisosospora spp。他们的生命周期包括从无性阶段转变为性阶段,通常仅限于单个宿主。当前对球虫寄生虫的研究集中于细胞生物学以及在不同生命阶段,宿主细胞侵袭和宿主寄生虫相互作用中蛋白质表达和传播的潜在机制。此外,还评估了新型的抗癌药物靶标。考虑到各种各样的研究问题以及减少和替代动物实验的要求,需要进一步开发和确定球球菌的体外种植以满足这些要求。出于这些目的,已建立的文化系统经常得到改善。此外,新的体外培养系统最近在球虫研究中获得了相当大的重要性。单层细胞的体外培养良好,可以支持寄生虫阶段的生存能力和发展,甚至可以在体外完成生命周期,如Cystoisosospora Suis和Eimeria Tenella所示。此外,新的三维细胞库模型用于传播隐孢子虫属。(球虫的近亲),三维类器官的感染也可以详细研究寄生虫与宿主组织之间的相互作用,因为寄生虫与宿主组织之间的相互作用也获得了知名度。2022作者。由Elsevier Ltd代表澳大利亚寄生虫学会出版。三维库系统中的最新进展是芯片上的器官模型,迄今为止,迄今为止仅测试了gondii的测试,但有望加速其他球虫的研究。最后,据报道,苏伊斯梭菌和隐孢子虫的生命周期的完成后,在无性阶段发生后,将继续在无宿主细胞环境中继续进行。这种轴承文化变得越来越可用,并开放了有关寄生虫生命周期阶段和新颖干预策略的研究的新途径。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
由于土壤中种植各种文化作物的10-20厘米层中的微生物数量达到了16-22百万,这是由于该层的土壤有利的环境以及没有阳光的杀戮作用。土壤微生物的一定份额与其形态结构直接相关,其含量约为0.3-60万,贫瘠的石质,沙质土壤。在7月至8月的夏季,在温室土壤中观察到了最多的微生物,23-2800万辆,该土壤富含文化肥料,每年耕种,在种植大蒜和洋葱的土壤中。分析土壤的微生物主要形成3组,由底部植物,真菌和细菌组成。在温室土壤中记录了数量最多的杜鹃花,而果园中最高数量记录了Basidiomycete群的代表。例如,1克15*15*10厘米的5年园林土壤中含有0.7-1.2,000亿个真菌菌丝,其长度在1/40 m2中达到25-35 m,在1 HA面积的500-600中占有共同的份额。作为种植不同农作物的田间细菌和真菌量的指标,苜蓿中的结节细菌小于棉(茎未去除)土壤中的腐烂细菌,而玉米田中的土壤细菌的数量几乎与蔬菜田中的土壤细菌相同。通常,在布哈拉绿洲的10-20厘米层中,在1 g土壤中记录了1,8-26万种细菌,该土壤上有局部肥料。85%是腐殖质,剩余10%的植物,5%的土壤动植物和动植物。近年来,有机农业和已广泛促进的环保产品的种植直接取决于用作底物的土壤的组成。当前在布哈拉绿洲中培养的土壤的有机成分可描述如下。众所周知,土壤的有机含量或多或少与植物数量成正比。这也可以在不同天然区域的植物量的示例中看到。例如,在森林苔原中为150-2500 g/m2,在森林taiga中为25000-40000 g/m2,在草原区域为1200-2500 g/m2,沙漠区域中的根数在植物的繁殖量中是有机物的幽默,在殖民地的一部分中,沙漠区域中的根数为1:8-1:9复杂性。尽管没有统一的理论形成理论,但腐殖质的速度取决于植物残基的数量和化学组成,土壤水分和充气,微生物活性的强度,微生物组的组成[3,4]。定量分析生活在不同土壤中的动物时,脊椎动物和无脊椎动物的重量比为1:1000。土壤脊椎动物居住在其中并参与各种过程,由于它们对土壤层,水和空气交换的混合以及高植物的生长和发展的积极影响。另一种无脊椎动物在土壤中筑巢并充分利用植物根周围的土壤是黑蚂蚁(Lasius Niger)。在土壤无脊椎动物中,earth的数量和数量最大,它们在1年内通过其体内每1公顷的土壤移动250-600吨土壤,并增加了几次生产率[5]。由于他们生活在低层建筑,花盆和其他类似植物的庭院中,因此已经研究了它们对植物与生长土壤之间关系的影响(图1和2)。选择蚂蚁在12个花盆中生长的植物和6个对照组,在那里不允许进入蚂蚁,并在60天内观察到花盆中生长的花的一般状况,花朵的新鲜度和美感。
图 S1. 皮升级孵化器阵列的制作方案。孵化器图案由 2D CAD 软件(DraftSight,法国 Dassault Systèmes SE)设计。孵化器的设计直径为 30 µm。首先将光刻胶(ZPN 1150-90,日本 Zeon 公司)以 2500 rpm 的转速旋涂在玻璃基板上 30 秒。然后,使用标准光刻工艺对光刻胶膜进行图案化。光刻胶膜的图案化残留物(高度约为 10 µm 的微柱)被用作孵化器阵列的模板。接下来,采用旋涂技术(旋转速度:4000 rpm)将氟惰性溶剂(CT-solv.180,AGC Inc.,日本)中的非晶态氟聚合物(Cytop CTX-809SP2,AGC Inc.,日本)沉积在模板上。之后,在涂有氟聚合物的基板上沉积 PDMS 薄膜。薄膜结构有助于抑制基板因内部应力而表现出的自弯曲现象。这意味着通过采用薄膜结构可以保持 PDMS 培养箱阵列和玻璃皿之间的界面粘附力。在这方面,我们采用旋涂沉积工艺来制备基于 PDMS 的培养箱阵列。将含有固化剂的 PDMS(Sylgard 184,陶氏化学公司,美国)的低聚物溶液旋涂在模板上并固化。 PDMS 膜的最终厚度约为 20 µm。然后,将完成的 PDMS 膜从模板上剥离。使用 LEXT OLS4100 激光扫描显微镜(日本奥林巴斯)确认 PDMS 膜的图案。
Brunda Bn和Manoj Sh Abstract Mulberry是蚕的种植最广泛种植的主食之一。桑叶叶显示出大量细菌,链霉菌,酵母和霉菌,这些微生物为桑树带来了很多好处。有益的微生物可以用作生物肥料来种植,并且作为益生菌,它们又减少了化肥的摄入,反过来又污染了农民的肥料和大量的肥料成本。关键词:桑berr虫,杂氮杆菌,杂草菌根真菌(AMF)简介桑树是世界上最广泛的经济性作物之一,因为它是用于蚕的主食食品,用于丝虫及其许多其他用法。生长,幼虫的发展和随后的茧产量受到桑树叶营养质量的很大影响。根据Charles(2004)[6],下动物没有发达的体液免疫力,可以通过益生菌轻松实现免疫刺激。 以及Amala等。 (2011)[7]坚持益生菌对蚕的免疫力的升级,而不是为疾病提供控制措施。 已经发现,桑叶叶含有大量细菌,链霉菌,酵母和霉菌。 根据Vasantharajan等人的说法。 (1968)[4]在所有氮杂杆菌和北京菌中,观察到近5%至10%的细菌种群。 观察到生长的植物从根接种中受益更多,而不是叶面处理。 像这种植物和氮杂杆菌一样获得互惠率。 根据Shi等人的说法。根据Charles(2004)[6],下动物没有发达的体液免疫力,可以通过益生菌轻松实现免疫刺激。以及Amala等。(2011)[7]坚持益生菌对蚕的免疫力的升级,而不是为疾病提供控制措施。已经发现,桑叶叶含有大量细菌,链霉菌,酵母和霉菌。根据Vasantharajan等人的说法。(1968)[4]在所有氮杂杆菌和北京菌中,观察到近5%至10%的细菌种群。观察到生长的植物从根接种中受益更多,而不是叶面处理。像这种植物和氮杂杆菌一样获得互惠率。根据Shi等人的说法。已经证明,桑叶浸出物既包含碳水化合物和氨基酸。植物将为偶氮杆菌提供碳源,而氮杂杆菌将为氮源提供氮源,因为它是免费的活氮固定剂。(2016)[2]。A number of arbuscular mycorrhizal fungal (AMF) species, within nine AMF genera - Acaulospora , Ambispora , Archaeospora , Claroideoglomus , Diversisporav , Glomus , Gigarspora , Redeckera and Paraglomus , can colonize mulberry roots to form beneficial arbuscular mycorrhizae.AMF具有增加叶片生长和生物量产生的能力,桑树叶和水果的质量和营养潜力,用于蚕生的生长和还原化肥的输入。AM共生也有效地赋予了桑树植物对干旱,盐,重金属和根部疾病的耐受性,尽管改善了水和养分摄取,强化根系,增强的光合作用能力,渗透调节,抗氧化剂,抗氧化剂,总糖,蛋白质,蛋白质,氨基酸,含量和酚类和酚类和酚类和酚类和酚类的活性。这些许多好处被AMF脱颖而出,向桑树植物脱颖而出。根据Taha等人的说法。 (2017)[3]益生菌是可行的,非致病的微生物,如果以足够的量给药,则赋予宿主的健康益处。 用酿酒酵母(酵母)和双歧杆菌(细菌)益生菌补充的桑charomyces叶子用于喂食两种蚕杂交。 对微生物给药的影响进行了研究,对幼虫,pupal和茧和壳重量进行了研究。 以及ERR,Cocooning,Pupution和Cocoon壳百分比。根据Taha等人的说法。(2017)[3]益生菌是可行的,非致病的微生物,如果以足够的量给药,则赋予宿主的健康益处。用酿酒酵母(酵母)和双歧杆菌(细菌)益生菌补充的桑charomyces叶子用于喂食两种蚕杂交。对微生物给药的影响进行了研究,对幼虫,pupal和茧和壳重量进行了研究。以及ERR,Cocooning,Pupution和Cocoon壳百分比。丝丝丝长度,断裂和丝绸%。消化酶(蛋白酶,转化酶和淀粉酶)估计比色。结果表明,B. Bifidum和S. cerevisiae改进了与对照相比的所有测试参数。益生菌的作用可能取决于经过测试的Bombyx Mori杂种。renditta代表生产一公斤生丝所需的可可丝的数量,在所有补充的双子芽孢杆菌或酿酒酵母的补充基中均显着改善。添加酵母(酿酒酵母)和细菌(双歧杆菌双歧杆菌)作为益生菌在桑树叶上的益生菌。
碳足迹(CF)可以是指导可持续食品生产系统的强大工具。本研究对CF进行了量化,并分析了跨农场类别的CF的可变性,以及旁遮普邦州大米和小麦生产的不同贡献投入。发现水稻的碳足迹比小麦(1.41吨Co 2 Eqha -1和0.28吨Co 2 Eqton -1)高得多(6.34吨Co 2 EQHA -1和0.91吨Co 2 EQ TON -1)。在不同的发射来源中,甲烷形成了主要份额(60.7%),然后是灌溉的免费电力(17.9%)(17.9%),n 2 O(10.8%),植物保护化学物质(7.5%),柴油(6.1%)和肥料(3%),而惠特(3%)则是wheat的主要燃料,含有N 2 o(41.3%)(41.3%)(41.3%(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%) (11.8%),电(10.6%)和化学物质(5.1%)。各个农场类别,肥料的份额(就农场(11.2%)和排放量(3.1)而言)仍然是边际农民的最大值,而大型农民则使用自由电力对温室气体排放量最大(18.5%)。,大米(95.5%)的农场排放量高于小麦(80.1%),因为在洪水泛滥的情况下培养了大米,导致甲烷排放。较高的非农场小麦排放的主要贡献者是肥料,尤其是P 2 O 5,然后使用柴油燃料和化学物质。这项研究强调了对农业投入的可持续管理的需求,这不仅会抵消相关的温室气体排放,还可以改善土壤健康。此外,对气候智能农业实践的认识以及获得DSR,激光升级和快乐种子等技术是确定农场和土地管理实践利用的关键因素,这些因素可能同时降低这些排放并提高农民的适应能力,从而提高粮食安全。
图 1. 单级连续培养(a)和两级连续培养(b)的示意图。在两级连续培养(b)中,橙色箭头、虚线框和字母代表计算整个过程的生物质和乙醇酸生产率的过程和参数。
已量化。堆肥和壳体中的细菌多样性在整个农作物周期中都增加了,这两种底物的联系都会增加。被PLFA所反映的,总生物生物量似乎与作物的菌丝体负相关。agaricus bisporus是定植底物中的主要真菌物种,替代了杰出的Hascomycota,并伴随着漆酶活性的持续增加,这被认为是Champignon菌丝体生长过程中蛋白质合成的主要产物。从第二阶段开始,真菌作物的代谢机制降解了木质素和碳水化合物,而这些成分几乎不会在壳体中降解,这反映了壳体在滋养作物方面的较小作用。这项研究中采用的技术为商业Champignon底物中不断变化的微生物组成提供了整体和详细的表征。所产生的知识将有助于改善堆肥配方(基础材料的选择),并通过以量身定制的生物刺激物的形式进行堆肥生产,例如,通过生物技术干预措施,并设计了以环境可持续的生物为基础的套管材料。