蘑菇栽培中最重要的方面之一是基质消毒。如果纤维素材料中的竞争性微生物没有被杀死,产量就会受到影响。通常使用蒸汽消毒来对蘑菇基质进行消毒。产生蒸汽需要大量的能量。能源来自天然气、柴油、电力或木柴。使用蒸汽会产生大量的运营成本,而且这个过程很耗时。需要开发一种更有效的臭氧灭菌技术来改善蘑菇基质灭菌。这种技术应该能够每天对大量基质进行灭菌,使种植者能够生产和销售更多的蘑菇,从而增加他们的收入。本文报道了一种新的基于臭氧的蘑菇基质灭菌技术,该技术在生产和时间方面更有效。这涉及将不同浓度的臭氧注入蘑菇基质,并进行分析以验证臭氧在蘑菇工业中的使用。分析了对整个基质体积进行灭菌所需的臭氧水平和处理时间。结果揭示了对整个蘑菇基质进行灭菌的最佳臭氧浓度和最佳时间。与传统的蒸汽灭菌技术相比,臭氧处理耗时更少。因此,从长远来看,它可以增加蘑菇基质的产量并降低成本。
摘要。本文分析了机器人系统对现代农业的影响。集成了高级技术的关键方面,例如饲养过程的自动化,牧场管理和自动作物收获。讨论了在农场成功实施创新解决方案的示例,包括移动饲料搅拌机,自动化小牛饲养系统,智能土壤样品收集器和飞行的自主花园机器人。特别注意应用这些技术的经济效率和可持续性,以及它们对改善工作条件和减少环境影响的影响。还讨论了与高初始投资,合格人员的需求以及旧农场结构对新技术的改编有关的挑战和问题。的结论,强调了其在面对日益增长的全球挑战时在实现可持续性和提高生产率方面的作用。
洋葱(Allium cepa L.)是一种园艺物种,其灯泡和空中部位被消耗,后者为绿洋葱。洋葱种植受疾病的影响,对水胁迫极为敏感,这大大降低了其产量。这项研究的目的是确定应用微生物财团,由生物肥料,生物刺激剂和生物防治剂组成的微生物财团对catamarca省(阿根廷)的洋葱培养的影响。由生物学真菌trichoderma spp的天然菌株组成的生物输入。和细菌菌株巴西,苏云金芽孢杆菌,根瘤菌豆科植物和Bradyrhizobium sp。被使用。这项研究是在卡帕亚氏菌科罗尼亚·德尔瓦勒(Colonia del Valle)的一个地块中进行的。实施了两种治疗方法:一种接种微生物财团,另一种是用水作为对照。进行了两个叶面应用。评估洋葱作物性能认为总产量,平均鳞茎重量,鳞茎大小,收获指数,生物质产量和植物数。结果表明,微生物联盟的应用增加了洋葱植物的产量,生长和发展。确定所选天然微生物的应用对植物具有生长促进作用,从而提高了洋葱作物的生长和生产力。
用于微生物专门代谢物的超临界液提取(SFE)方法在文献中非常稀少,限于液体培养。我们在这里提出了一种新的样品制备方法,以实现固态培养的专门代谢物的SFE。sfe参数,包括CO 2压力,提取细胞的温度和共溶剂的百分比,在核核酸菌群SNB-CN111的固态培养物(一种产生Azaphilone copments的丝状真菌)的情况下进行了优化。然后通过逆期液相色谱法与电喷雾电离和串联质谱法分析提取物的代谢组成。由METGEM软件产生的产生的分子网络允许在不同条件下提取的代谢产物的注释,从而根据Azaphilone亚家族的极性证实了裂缝的富集。首先,100%CO 2的分数比己烷浸渍高十倍,SFE方法的优化导致提取的产量是将CO 2与乙醇混合在一起时的两倍高,是乙醇2的高度,并且表明CO 2 /乙醇SFE是比标准浸润方法更环保和高效的量,以使其对Azaphilo-neSes的萃取相比。
摘要本研究探讨了在谷物和豆科植物上种植牡蛎蘑菇的生存能力,饲料质量较差,研究牡蛎蘑菇生产力以及对农业系统中质量,氮气和碳流的影响。将四种类型的稻草(小麦,玉米,Faba豆和大豆)用作蘑菇种植的底物。新鲜产量的变化很大,从玉米稻草的114%生物学效率到小麦稻草的58%,而干燥的产量范围从玉米稻草的9.2%生物量转化率到小麦稻草的3.8%。蘑菇的蛋白质含量在小麦稻草上的16.8%和面包豆稻草的23.2%之间变化,与稻草的氮含量相关。此外,结果表明,碳排放量的显着差异,范围从估计的3.5公斤(在小麦稻草上)到每公斤干蘑菇发射的2.6千克(在大豆稻草上)。这些发现强调了基材在蘑菇种植中的重要性,对农业资源管理和粮食生产产生了影响。取决于焦点,不同的底物可能被认为是最佳的。玉米稻草在这项研究中产生了大多数蘑菇,而大豆稻草则散发出最少的碳,而Faba Bean Straw产生了蛋白质含量更高的蘑菇,小麦稻草保留了最氮的含量。
摘要:类胡萝卜素具有多种生物活性和潜在的药物应用,作为必需的营养品已引起广泛关注。微藻作为这些生物活性化合物的天然生产者,为可持续且经济高效的类胡萝卜素生产提供了有希望的途径。尽管能够培养微藻以获取具有健康益处的高价值类胡萝卜素,但只有雨生红球藻和杜氏盐藻分别以商业规模生产虾青素和β-胡萝卜素。本综述探讨了基因工程和培养策略方面的最新进展,以提高微藻的叶黄素产量。详细讨论了随机诱变、基因工程(包括 CRISPR 技术和多组学方法)等技术对提高叶黄素产量的影响。比较了创新的培养策略,强调了它们的优势和挑战。本文最后确定了未来的研究方向和挑战,并提出了继续推进具有成本效益和转基因微藻类胡萝卜素在药物应用方面的策略。
由于土壤中种植各种文化作物的10-20厘米层中的微生物数量达到了16-22百万,这是由于该层的土壤有利的环境以及没有阳光的杀戮作用。土壤微生物的一定份额与其形态结构直接相关,其含量约为0.3-60万,贫瘠的石质,沙质土壤。在7月至8月的夏季,在温室土壤中观察到了最多的微生物,23-2800万辆,该土壤富含文化肥料,每年耕种,在种植大蒜和洋葱的土壤中。分析土壤的微生物主要形成3组,由底部植物,真菌和细菌组成。在温室土壤中记录了数量最多的杜鹃花,而果园中最高数量记录了Basidiomycete群的代表。例如,1克15*15*10厘米的5年园林土壤中含有0.7-1.2,000亿个真菌菌丝,其长度在1/40 m2中达到25-35 m,在1 HA面积的500-600中占有共同的份额。作为种植不同农作物的田间细菌和真菌量的指标,苜蓿中的结节细菌小于棉(茎未去除)土壤中的腐烂细菌,而玉米田中的土壤细菌的数量几乎与蔬菜田中的土壤细菌相同。通常,在布哈拉绿洲的10-20厘米层中,在1 g土壤中记录了1,8-26万种细菌,该土壤上有局部肥料。85%是腐殖质,剩余10%的植物,5%的土壤动植物和动植物。近年来,有机农业和已广泛促进的环保产品的种植直接取决于用作底物的土壤的组成。当前在布哈拉绿洲中培养的土壤的有机成分可描述如下。众所周知,土壤的有机含量或多或少与植物数量成正比。这也可以在不同天然区域的植物量的示例中看到。例如,在森林苔原中为150-2500 g/m2,在森林taiga中为25000-40000 g/m2,在草原区域为1200-2500 g/m2,沙漠区域中的根数在植物的繁殖量中是有机物的幽默,在殖民地的一部分中,沙漠区域中的根数为1:8-1:9复杂性。尽管没有统一的理论形成理论,但腐殖质的速度取决于植物残基的数量和化学组成,土壤水分和充气,微生物活性的强度,微生物组的组成[3,4]。定量分析生活在不同土壤中的动物时,脊椎动物和无脊椎动物的重量比为1:1000。土壤脊椎动物居住在其中并参与各种过程,由于它们对土壤层,水和空气交换的混合以及高植物的生长和发展的积极影响。另一种无脊椎动物在土壤中筑巢并充分利用植物根周围的土壤是黑蚂蚁(Lasius Niger)。在土壤无脊椎动物中,earth的数量和数量最大,它们在1年内通过其体内每1公顷的土壤移动250-600吨土壤,并增加了几次生产率[5]。由于他们生活在低层建筑,花盆和其他类似植物的庭院中,因此已经研究了它们对植物与生长土壤之间关系的影响(图1和2)。选择蚂蚁在12个花盆中生长的植物和6个对照组,在那里不允许进入蚂蚁,并在60天内观察到花盆中生长的花的一般状况,花朵的新鲜度和美感。
已有70多年的历史,无数的研究计划旨在开发基于微藻的产品和服务,例如食品和生物燃料,废水处理和碳封存(Borowitzka,2013b; Craggs et al。不幸的是,尽管这项研究在微藻生物学,反应堆设计和生物量处理方面产生了显着的知识进步,但微藻类的培养仍然是一个围绕一些高价值食品应用的新兴行业(Plouviez等,2022年)。要了解为什么学术期望和商业现实之间仍然存在如此差距,这篇意见文章Brie trip y审查了商业微藻生产的最新技术,并讨论了限制其工业吸收的约束。值得注意的是,本文既不打算对领域的研究进展进行全面综述,也不会挑战微藻生物技术的巨大潜力。相反,我们试图提高人们对当前期望与微藻种植现实之间差距之间的认识,以便更好地为未来的投资提供对领域的投资。
摘要有机肥料和生物肥料对土壤结构和微生物种群具有良好的影响,例如可以改善农业系统整体健康的研究。这项研究重点介绍了Fenugreek的增长,产量的特征和经济考虑,该特征是Fabaceae家族的成员,并以其烹饪和治疗益处而闻名。在Rabi Season 2023-24期间,在Amity University Noida(北方邦)的Amity农业研究所(Amity University Noida)在Amity University Noida(北方邦)进行了一项研究,以探讨使用不同的有机肥料和生物肥料对Fenugreek生产的影响。该实验是在随机块设计中布置的,其中包括三个重复,包括六种治疗方法。该研究使用现场试验来比较这些方法的传统方法的结果并分析其经济可行性。结果表明,使用有机输入,尤其是与氮杂杆菌混合的Vermicompost,可显着改善植物的生长和产量。生长参数的最佳结果。植物高度(34.33 cm),以及每植物的分支数(11.77)的记录在用(T4)(T4)(Vermicostost +Azotobacter)的地块中记录,此外,使用Biio Fershizers与有机肥料相比,将Biio Fertilizers与仅使用的有机肥料产生更高的净回报率和益处率的含量相比,使用了有机肥料。数字评估证明了使用有机肥料组合的经济可行性,T4(Vermicompost + Azotobacter)产生了119,389卢比的最高净回报。这些发现突出了可持续的胡芦巴种植中有机投入的潜力,从而为农民和利益相关者提供了有用的见解,以促进环保农业实践。
人工智能(AI)为医学的进步带来了巨大的希望。近年来,医疗AI已从理论走向实际临床实践(1,2)。医疗AI的优势包括降低医疗成本和提高诊断和治疗效率(3,4)。AI可以帮助建立精确的诊断和适当的治疗策略,例如Watson(5)或Google的DeepMind(5),为癌症提供最佳治疗建议并进行基因组分析。此外,AI已用于预测低级别胶质瘤的遗传变异(6),识别小细胞肺癌的遗传表型(7),并自动进行骨龄评估(8)。这些例子表明,未来AI的应用将进一步扩展到其他领域,从而导致医生的角色和行医方式发生根本性变化。同时,AI程序在医疗领域的开发和利用目前正进入商业化阶段,需要不同学术背景和职业的参与(9)。人才培养,尤其是高校的专业教育,是迈向医疗AI时代的基石(10)。医学人工智能正在迅速发展成为一门多学科的科学分支,涉及基础生物医学科学、计算机科学、相关法律和伦理等。全球范围内,医学院课程以及学术医院的研究生医学教育尚未能够让学生和受训人员掌握这项新兴技术(11)。一些观点指出了人工智能在医学领域的应用的益处和局限性(12,13),但与正式教育年轻一代相关的方面尚未公开讨论。一些理工科院校已经设立了独立的人工智能学院(14),然而,课程安排中仍然缺乏基础医学课程和临床应用场景。一个现实的、被广泛接受的医学人工智能人才培养方案仍有待建立。教育、医学和医学界仍在就医学人工智能的教育改革展开激烈争论。
