图1(a)光合微生物的光有限生长速率可以表示为光强度的函数。显示的是第2节中指定的参数的Haldane/AIBA方程。(b)对于由haldane方程描述的生长速率,以每摩尔光子GCDM测量的生物量产率是光强度的降低功能。(c)相当于haldane方程的描述,可以将光有限的生长速率理解为三个因素的产物:最大生物量产率(GCDM每一个mol光子),(无量纲)光合作用效率(无量纲)光合作用效率和光吸收速率(每次GCDM每次GCDM)。(d)光合效率指定用于合成细胞生物量的吸收光子的相对量,并且是特定生长速率的降低功能。GCDM,克细胞干质量。
考特尼·B·希尔顿(Courtney B. , Cody T. Ross 10 , Mary Beth Neff 11,12 , Alia Martin 11 , Laura K. Cirelli 13,14 , Sandra E. Trehub 14 , Jinqi Song 15 , Minju Kim 16 , Adena Schachner 16 , Tom A. Vardy 17 , Quentin D. Atkinson 17,18 , Amanda Salenius 19 , Jannik Andelin 19 , Jan Antfolk 19 , Purnima Madhivanan 20,21,22,23 , Anand Siddaiah 23 , Caitlyn D. Placek 24 , Gul Deniz Salali 25 , Sarai Keestra 25 , Manvir Singh 26,27 , Scott A. Collins 28 , John Q. Patton 29 , Camila Scaff 30 , Jonathan Stieglitz 27,31 , Silvia Ccari Cutipa 32 , Cristina Moya 33,34,Rohan R. Sagar 35,36,Mariamu Anyawire 37,Audax Mabulla 38,Brian M. Wood 39,Max M. Krasnow 1,40&Samuel A. Mehr 1,41,∗
1 哈佛大学心理学系,美国马萨诸塞州剑桥 02138。2 加州大学默塞德分校认知与信息科学系,美国加利福尼亚州默塞德 95343。3 波士顿学院心理学系,美国马萨诸塞州栗树山 02467。4 加州大学洛杉矶分校传播系,美国加利福尼亚州洛杉矶 90095。5 阿姆斯特丹大学心理学系,荷兰阿姆斯特丹 1012 WX。6 普林斯顿大学政治系,美国新泽西州普林斯顿 08544。7 波士顿大学人类学系,美国马萨诸塞州波士顿 02215。8 波兰克拉科夫雅盖隆大学医学院健康科学学院环境健康系,31-066。 9 马克斯普朗克进化人类学研究所人类行为、生态与文化系,04103 莱比锡,德国。10 惠灵顿维多利亚大学心理学院,惠灵顿 6012,新西兰。11 奥斯陆大学哲学、古典学、艺术史与思想系,奥斯陆 0315,挪威。12 多伦多大学士嘉堡分校心理学系,多伦多,安大略省 M1C 1A4,加拿大。13 多伦多大学密西沙加分校心理学系,密西沙加,安大略省 L5L 1C6,加拿大。14 加州大学洛杉矶分校数学系,洛杉矶,加利福尼亚州 90095,美国。15 加州大学圣地亚哥分校心理学系,拉霍亚,加利福尼亚州 92093-0109,美国。 16 奥克兰大学心理学院,奥克兰 1010,新西兰。17 马克斯普朗克人类历史科学研究所语言与文化进化系,D-07745 耶拿,德国。18 奥博学院心理学系,20500 图尔库,芬兰。19 亚利桑那大学公共卫生学院健康促进科学系,图森,亚利桑那州 85724,美国。20 亚利桑那大学医学院医学系、传染病科,图森,亚利桑那州 85724,美国。21 亚利桑那大学医学院家庭与社区医学系,图森,亚利桑那州 85724,美国。22 印度公共卫生研究所,迈索尔 570020,印度。23 鲍尔州立大学人类学系,曼西,印第安纳州 47306,美国。 24 伦敦大学学院人类学系,英国伦敦 WC1H 0BW。25 哈佛大学人类进化生物学系,美国马萨诸塞州剑桥 02138。26 图卢兹高等研究院,法国图卢兹 Cedex 31080。27 亚利桑那州立大学人类进化与社会变革学院,美国亚利桑那州坦佩 85281。28 加州州立大学人类学系,美国加利福尼亚州富勒顿 92831。29 苏黎世大学进化医学研究所,瑞士苏黎世 8006。30 图卢兹第一大学,法国图卢兹 Cedex 6,31080。31 加州大学戴维斯分校人类学系,美国加利福尼亚州戴维斯 95616。 32 伦敦布鲁内尔大学文化与进化中心,UB8 3PH 厄克斯布里奇,英国。33 未来世代大学,西弗吉尼亚州 Circle Ville 26807,美国。34 哈皮鹰音乐基金会,圭亚那乔治敦。35 加利福尼亚大学洛杉矶分校人类学系,加利福尼亚州洛杉矶 90095,美国。36 哈佛大学继续教育部,马萨诸塞州剑桥 02138,美国。37 哈佛大学数据科学计划,马萨诸塞州剑桥 02138,美国。
我们通过重编程帕金森氏病患者的SCNA基因三重三次固定(3XSNCA)的帕金森氏病患者的外周血单核细胞产生了IPSC。患者患有少年发作的严重形式的帕金森氏病。CRISPR/CAS9基因编辑来使超核SCNA基因拷贝失活,以使患者的等生IPSC系作为固有的控制细胞。3xSNCA IPSC分化为皮质或多巴胺能神经元培养物,并最终暴露于预先形成的αSyn蛋白组件中,以加速内源性αSyn聚集体的产生。非常明显的是,患者衍生的神经元开发了类似于患者脑组织中通常描述的Lewy身体的FrankαSynperisasic骨聚集体。患者衍生的神经元显示出有限的生存率,代谢功能障碍和明显的基因表达改变,如RNA-SEQ转录组分析所概述。
图 1 源自恶性胸腔积液标本的患者来源的恶性胸膜间皮瘤 (MPM) 细胞培养物确实是癌性的,并显示出肿瘤干性特性。 (A–E) 顶部:培养中代表性 MPM 细胞的相差图像 (10 倍放大),显示菌落形成 (白色箭头)、鹅卵石 (黑色箭头) 和纺锤 (红色箭头) 形状。下图:选定的 MPM 细胞培养物经 May Grunwald Giemsa 染色的细胞离心涂片标本,显示 (A) 多形性和多个核仁(放大 10 倍),(B) 小型非典型核仁和双色细胞质,典型的间皮形态(放大 40 倍),(C) 具有大核和非常大核仁的非典型特征(放大 40 倍),(D) 具有多个核仁的奇异核(放大 40 倍),(E) 大核和多个核(双核)以及非典型和多个核仁(放大 40 倍)。(F-M) MPM 患者来源的癌细胞培养物形成的肿瘤球体的相差图像(放大 10 倍)。患者来源的 MPM 细胞培养物能够形成肿瘤球,突出肿瘤干性特性和癌症干细胞亚群的存在。
tau聚集和高磷酸化是阿尔茨海默氏病(AD)的关键神经学标志,并且在临床表现过程中观察到的tau的临时散布表明,tau病理可能会沿着轴突网络扩散,并在突触连接的神经元之间传播。在这里,我们开发了一种细胞模型,该模型允许使用微流体装置研究人类AD衍生的TAU传播从神经元到神经元的传播。我们通过使用高含有成像技术和内部开发的交互式计算机程序来显示,该程序源自广告的tau种子啮齿动物tau,以微流体库模型以可量化的方式传播跨神经。此外,我们能够将此型号转换为中型通量格式,使用户可以在标准96-井板的足迹中同时处理16个两室设备。此外,我们表明,聚集的小分子抑制剂可以阻止tau凝集的反式神经元转移,这表明该系统可用于评估TAU转移的机制并找到治疗性干预措施。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2020 年 12 月 30 日发布了此版本。;https://doi.org/10.1101/2020.12.29.424674 doi: bioRxiv preprint
。CC-BY-NC-ND 4.0 国际许可,未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 7 月 1 日发布。;https://doi.org/10.1101/2020.07.01.183145 doi:bioRxiv 预印本
在许多情况下,从基础神经科学到生物医学应用,正确识别突发事件都至关重要。然而,文献中可以找到的突发检测方法都没有被广泛用于此任务。作为传统技术的替代方案,提出了一种用于实时突发检测的新型神经形态方法,并在体外培养采集的数据上进行了测试。该系统由一个神经形态听觉传感器组成,它将从电生理记录中获得的输入信号转换为尖峰并将其分解为不同的频带。传感器的输出被发送到在 SpiNNaker 板上实现的经过训练的尖峰神经网络,该网络可辨别突发和非突发活动。这种数据驱动的方法与 8 种不同的传统基于尖峰的方法进行了比较,解决了它们的一些缺点,例如能够检测高频和低频事件并以在线方式工作。使用所提出的系统,在检测到的事件数量、平均突发持续时间和相关性方面获得了与当前最先进的方法相似的结果,也受益于
